Air pollution may reduce effectiveness of antibiotics: study

March 4, 2017

London, Mar 4: Air pollution may increase the potential of bacteria to cause respiratory infections by reducing the effectiveness of antibiotic treatment, scientists have found for the first time.airpollution

The study by researchers at the University of Leicester in the UK has important implications for the treatment of infectious diseases, which are known to be increased in areas with high levels of air pollution.

They looked into how air pollution affects the bacteria living in our bodies, specifically the respiratory tract - the nose, throat and lungs.

A major component of air pollution is black carbon, which is produced through the burning of fossil fuels such as diesel, biofuels and biomass.

The research shows that this pollutant changes the way in which bacteria grow and form communities, which could affect how they survive on the lining of our respiratory tracts and how well they are able to hide from, and combat, our immune systems.

"This work increases our understanding of how air pollution affects human health," said Julie Morrissey, Associate Professor at Leicester.

"It shows that the bacteria which cause respiratory infections are affected by air pollution, possibly increasing the risk of infection and the effectiveness of antibiotic treatment of these illnesses," said Morrissey.

"Our research could initiate an entirely new understanding of how air pollution affects human health. It will lead to enhancement of research to understand how air pollution leads to severe respiratory problems and perturbs the environmental cycles essential for life," Morrissey said.

"Everybody worldwide is exposed to air pollution every time they breathe," Shane Hussey and Jo Purves, research associates working on the project said.

"It is something we cannot limit our exposure to as individuals, but we know that it can make us ill. So we need to understand what it is doing to us, how it is making us unhealthy, and how we might be able to stop these effects," they said.

The research focused on two human pathogens, Staphylococcus aureus and Streptococcus pneumoniae, which are both major causes of respiratory diseases and exhibit high levels of resistance to antibiotics.

The team found that black carbon alters the antibiotic tolerance of Staphylococcus aureus communities and importantly increases the resistance of communities of Streptococcus pneumoniae to penicillin, the front line treatment of bacterial pneumonia.

It was also found that black carbon caused Streptococcus pneumoniae to spread from the nose to the lower respiratory tract, which is a key step in development of disease.

The study was published in the journal Environmental Microbiology.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 4,2020

Boston, Feb 4: Practising yoga may increase levels of a messenger molecule involved in regulating brain activity, and completing one yoga class per week may maintain elevated levels of this chemical, according to a study which may lead to better ways of mitigating depressive symptoms.

The study, published in the Journal of Alternative and Complementary Medicine, assessed a group of 30 clinically depressed patients who were randomly divided into two groups.

According to the researchers, including those from Boston University in the US, both groups engaged in coherent breathing, and Iyengar yoga -- a form of hatha yoga, developed by B. K. S. Iyengar, emphasising on detail, precision, and alignment in the performance of yoga postures.

The only difference between the groups, the scientists said, was the number of 90 minute yoga sessions, and home sessions in which each group participated.

Over three months, they said, the high-dose group (HDG) was assigned three sessions per week, while the low-intensity group (LIG) engaged in two sessions per week.

The participants underwent magnetic resonance imaging (MRI) scans of their brain before the first and after the last yoga session, and also completed a clinical depression scale to monitor their symptoms, the study noted.

Results of the study revealed that both groups had improvement in depressive symptoms after three months.

Their MRI analysis showed that levels of the brain messenger molecule GABA were elevated after three months of yoga, as compared to the levels before starting yoga.

According to the study, this increase was found for approximately four days after the last yoga session, but the rise was no longer observed after about eight days.

"The study suggests that the associated increase in GABA levels after a yoga session are 'time-limited' similar to that of pharmacologic treatments such that completing one session of yoga per week may maintain elevated levels of GABA," explained study co-author Chris Streeter from Boston University.

Providing evidence-based data may help in getting more individuals to try yoga as a strategy for improving their health and well-being, the scientists said.

"A unique strength of this study is that pairing the yoga intervention with brain imaging provides important neurobiological insight as to the 'how' yoga may help to alleviate depression and anxiety," said study co-author Marisa Silveri from Harvard University.

In this study, we found that an important neurochemical, GABA, which is related to mood, anxiety, and sleep, is significantly increased in association with a yoga intervention," Silveri said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 26,2020

High-protein diets may help people lose weight and build muscle, but there is a downside to it --a greater heart attack risk. Researchers now report that high-protein diets boost artery-clogging plaque.

The research in mice showed that high-protein diets spur unstable plaque -- the kind most prone to rupturing and causing blocked arteries.

More plaque buildup in the arteries, particularly if it's unstable, increases the risk of heart attack.

"There are clear weight-loss benefits to high-protein diets, which has boosted their popularity in recent years," said senior author Babak Razani, associate professor at Washington University School of Medicine in St. Louis, Missouri.

"But animal studies and some large epidemiological studies in people have linked high dietary protein to cardiovascular problems. We decided to take a look at whether there is truly a causal link between high dietary protein and poorer cardiovascular health," Razani added.

The researchers studied mice who were fed a high-fat diet to deliberately induce atherosclerosis, or plaque buildup in the arteries.

Some of the mice received a high-fat diet that was also high in protein. And others were fed a high-fat, low-protein diet for comparison.

The mice on the high-fat, high-protein diet developed worse atherosclerosis -- about 30 per cent more plaque in the arteries -- than mice on the high-fat, normal-protein diet, despite the fact that the mice eating more protein did not gain weight, unlike the mice on the high-fat, normal-protein diet.

"A couple of a scoop of protein powder in a milkshake or smoothie adds something like 40 grams of protein -- almost equivalent to the daily recommended intake," Razani said.

"To see if protein has an effect on cardiovascular health, we tripled the amount of protein that the mice receive in the high-fat, high-protein diet -- keeping the fat constant. Protein went from 15 per cent to 46 per cent of calories for these mice".

Plaque contains a mix of fat, cholesterol, calcium deposits and dead cells. Past work by Razani's team and other groups has shown that immune cells called macrophages work to clean up plaque in the arteries.

But the environment inside plaque can overwhelm these cells, and when such cells die, they make the problem worse, contributing to plaque buildup and increasing plaque complexity.

"In mice on the high-protein diet, their plaques were a macrophage graveyard," Razani informed.

To understand how high dietary protein might increase plaque complexity, Razani and his colleagues also studied the path protein takes after it has been digested -- broken down into its original building blocks, called amino acids.

"This study is not the first to show a telltale increase in plaque with high-protein diets, but it offers a deeper understanding of the impact of high protein with the detailed analysis of the plaques," said Razani.

"This work not only defines the critical processes underlying the cardiovascular risks of dietary protein but also lays the groundwork for targeting these pathways in treating heart disease," he added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.