Ambassador of France to confer 'Knight of the Legion of Honour' to Azim Premji

Agencies
November 27, 2018

Bengaluru, Nov 27: Ambassador of France to India Alexandre Ziegler will confer the highest French Civilian distinction, Chevalier de la Legion of Honneur- 'Knight of the Legion of Honour' on Wipro Chairman Azim Premji tomorrow.

The award was in recognition of Mr Premji's outstanding contribution to developing the information technology industry in India, his economic outreach in France and his laudable contribution to society as a philanthropist through the Azim Premji Foundation and University, according to a release here on Tuesday.

The dignitary, during his two-day visit to tech hub on Nov 28 and 29, will meet the Indian and French Tech business community and attend the Bengaluru Tech Summit. The Ambassador of France will meet representatives of more than 30 innovative companies from the French technology business community either from France or with strong linkages to France. Large French digital companies already have a strong footprint in India, employing over 130,000 people at their R&D centers and facilities.

This meeting will be an opportunity to initiate the development of a strong entrepreneurial ecosystem that draws inspiration from the French Tech movement, a growing global community made up of a new generation of entrepreneurs, investors, engineers and innovators gathered under one banner.

On November 29, Ambassador Ziegler will attend the inaugural session of the Bengaluru Tech Summit and visit the exhibition. He will then visit the Infosys campus and attend a leadership meeting.

Speaking ahead of the occasion, Ambassador Alexandre Ziegler said, I will be delighted to attend the 2018 Bengaluru Tech Summit, whose theme of 'Innovation & Impact' echoes France's robust policy of capitalising on initiatives developed by French Tech members themselves and building on existing ideas to create a snowball effect. I am looking forward to meeting sectoral French companies, which are creating an entrepreneurial ecosystem to foster and support innovation and partnerships between France and India. And last but obviously not the least, it will be a privilege for me to confer the insignia of Knight of the Legion of Honour on renowned tech magnate and philanthropist, Mr Premji.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 6,2020

Washington D.C., Feb 6: An international team of astronomers has found an unusual monster galaxy that existed about 12 billion years ago when the universe was only 1.8 billion years old.

The team of astronomers was led by scientists at the University of California, Riverside.

Dubbed XMM-2599, the galaxy formed stars at a high rate and then died. Why it suddenly stopped forming stars is unclear.

"Even before the universe was 2 billion years old, XMM-2599 had already formed a mass of more than 300 billion suns, making it an ultra massive galaxy," said Benjamin Forrest, a postdoctoral researcher in the UC Riverside Department of Physics and Astronomy and the study's lead author.

"More remarkably, we show that XMM-2599 formed most of its stars in a huge frenzy when the universe was less than 1 billion years old and then became inactive by the time the universe was only 1.8 billion years old," Forrest added.

The team used spectroscopic observations from the W. M. Keck Observatory's powerful Multi-Object Spectrograph for Infrared Exploration or MOSFIRE, to make detailed measurements of XMM-2599 and precisely quantify its distance.

The study results appear in the Astrophysical Journal.

"In this epoch, very few galaxies have stopped forming stars, and none are as massive as XMM-2599," said Gillian Wilson, a professor of physics and astronomy at UCR in whose lab Forrest works.

"The mere existence of ultramassive galaxies like XMM-2599 proves quite a challenge to numerical models. Even though such massive galaxies are incredibly rare at this epoch, the models do predict them."

"The predicted galaxies, however, are expected to be actively forming stars. What makes XMM-2599 so interesting, unusual, and surprising is that it is no longer forming stars, perhaps because it stopped getting fuel or its black hole began to turn on. Our results call for changes in how models turn off star formation in early galaxies," the professor stated.

The research team found XMM-2599 formed more than 1,000 solar masses a year in stars at its peak of activity -- an extremely high rate of star formation. In contrast, the Milky Way forms about one new star a year.

"XMM-2599 may be a descendant of a population of highly star-forming dusty galaxies in the very early universe that new infrared telescopes have recently discovered," said Danilo Marchesini, an associate professor of astronomy at Tufts University and a co-author on the study.

"We have caught XMM-2599 in its inactive phase," Wilson said, who led the W. M. Keck Observatory data acquisition
Co-author Michael Cooper, a professor of astronomy at UC Irvine, said this outcome is a strong possibility.

"Perhaps during the following 11.7 billion years of cosmic history, XMM-2599 will become the central member of one of the brightest and most massive clusters of galaxies in the local universe," he said.

"Alternatively, it could continue to exist in isolation. Or we could have a scenario that lies between these two outcomes," he stated.

The study was supported by grants from the National Science Foundation and NASA.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 2,2020

Leiden, Jul 2: Astronomers have discovered a luminous galaxy caught in the act of reionizing its surrounding gas only 800 million years after the Big Bang.

The research, led by Romain Meyer, PhD student at UCL in London, UK, has been presented at the virtual annual meeting of the European Astronomical Society (EAS).

Studying the first galaxies that formed 13 billion years ago is essential to understanding our cosmic origins. One of the current hot topics in extragalactic astronomy is 'cosmic reionization,' the process in which the intergalactic gas was ionized (atoms stripped of their electrons).

Cosmic reionization is similar to an unsolved murder: We have clear evidence for it, but who did it, how and when? We now have strong evidence that hydrogen reionization was completed about 13 billion years ago, in the first billion years of the universe, with bubbles of ionized gas slowly growing and overlapping.

The objects capable of creating such ionized hydrogen bubbles have however remained mysterious until now: the discovery of a luminous galaxy in which 60-100 percent of ionizing photons escape, is likely responsible for ionizing its local bubble. This suggests the case is closer to being solved.

The two main suspects for cosmic reionization are usually 1) a population of numerous faint galaxies leaking ~10 percent of their energetic photons, and 2) an 'oligarchy' of luminous galaxies with a much larger percentage (>50 percent) of photons escaping each galaxy.

In either case, these first galaxies were very different from those today: galaxies in the local universe are very inefficient leakers, with only <2-3 percent of ionizing photons escaping their host. To understand which galaxies governed cosmic reionization, astronomers must measure the so-called escape fractions of galaxies in the reionization era.

The detection of light from excited hydrogen atoms (the so-called Lyman-alpha line) can be used to infer the fraction of escaping photons. On the one hand, such detections are rare because reionization-era galaxies are surrounded by neutral gas which absorbs that signature hydrogen emission.

On the other hand, if this hydrogen signal is detected it represents a 'smoking gun' for a large ionized bubble, meaning we have caught a galaxy reionizing its surroundings. The size of the bubble and the galaxy's luminosity determines whether it is solely responsible for creating this ionized bubble or if unseen accomplices are necessary.

The discovery of a luminous galaxy 800 million years after the Big Bang supports the scenario where an 'oligarchy' of bright leakers emits most of the ionizing photons.

"It is the first time we can point to an object responsible for creating an ionized bubble, without the need for a contribution from unseen galaxies.

Additional observations with the upcoming James Webb Space Telescope will enable us to study further what is likely one of the best suspects for the unsolved case of cosmic reionization," said Meyer.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
March 14,2020

New Delhi, Mar 14: Excise duty on petrol and diesel was on Saturday hiked by ₹3 per litre as the government looked to mop up gains arising from fall in international oil prices.

Special excise duty on petrol was hiked by ₹2 to ₹8 per litre incase of petrol and to Rs 4 incase of diesel, an official notification said.

Additionally, road cess on petrol was raised by ₹1 per litre each on petrol and diesel to ₹10.

The increase in excise duty would in normal course result in a hike in petrol and diesel prices but most of it would be adjusted against the fall in rates that would have necessitated because of slump in international oil prices.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.