Biostatis could prevent death from traumatic injury

Agencies
March 6, 2018

Washington, Mar 6: The US defence research agency is developing treatments that can slow down biological processes in the event of life-threatening injuries, extending the critical "golden hour" within which the patients life can be saved.

When a soldier suffers a traumatic injury or acute infection, the time from event to first medical treatment is usually the most significant factor in determining the outcome between saving a life or not.

This critical, initial window of time is called the "golden hour," but in many cases the opportunity to intervene may extend much less than sixty minutes, which is why the military invests heavily in moving casualties as rapidly as possible from the battlefield to suitable medical facilities.

However, due to the realities of combat, there are often hard limits to the availability of rapid medical transport and care.

The US Defense Advanced Research Projects Agency (DARPA) created the Biostasis programme to develop new possibilities for extending the golden hour, not by improving logistics or battlefield care, but by going after time itself, at least how the body manages it.

Biostasis will attempt to directly address the need for additional time in continuously operating biological systems faced with catastrophic, life-threatening events.

The programme will leverage molecular biology to develop new ways of controlling the speed at which living systems operate, and thus extend the window of time following a damaging event before a system collapses. The concept aims to slow life to save life.

"At the molecular level, life is a set of continuous biochemical reactions, and a defining characteristic of these reactions is that they need a catalyst to occur at all," said Tristan McClure-Begley, the Biostasis programme manager.

"Within a cell, these catalysts come in the form of proteins and large molecular machines that transform chemical and kinetic energy into biological processes," said McClure-Begley.

"Our goal with Biostasis is to control those molecular machines and get them to all slow their roll at about the same rate so that we can slow down the entire system gracefully and avoid adverse consequences when the intervention is reversed or wears off," he said.

DARPA is looking for biochemical approaches that control cellular energetics at the protein level.

Creatures such as tardigrades and wood frogs exhibit a capability known as "cryptobiosis," a state where all metabolic processes appear to have stopped, yet life persists.

While the specific molecular mechanisms involved in these animals are very different, they share a common biochemical concept: they selectively stabilise their intracellular machinery.

"If we can figure out the best ways to bolster other biological systems and make them less likely to enter a runaway downward spiral after being damaged, then we will have made a significant addition to the biology toolbox," said McClure-Begley.

Biostasis is initially aimed at generating proof-of-concept, benchtop technologies and testing their application in simple living systems for experimental validation.

To support eventual transition to patients, DARPA will work with federal health and regulatory agencies as the program advances to develop a pathway for potential, future human medical use.

By the end of the five-year, fundamental research program DARPA hopes to have multiple tools for reducing the risk of permanent damage or death following acute injury or infection.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 4,2020

Despite tremendous advances in treatment of congenital heart disease (CHD), a new global study shows that the chances for a child to survive a CHD diagnosis is significantly less in low-income countries.

The research revealed that nearly 12 million people are currently living with CHD globally, 18.7 per cent more than in 1990.

The findings, published in The Lancet, is drawn from the first comprehensive study of congenital heart disease across 195 countries, prepared using data from the Global Burden of Diseases, Injuries and Risk Factors Study 2017 (GBD).

"Previous congenital heart estimates came from few data sources, were geographically narrow and did not evaluate CHD throughout the life course," said the study authors from Children's National Hospital in the US.

This is the first time the GBD study data was used along with all available data sources and previous publications - making it the most comprehensive study on the congenital heart disease burden to date.

The study found a 34.5 per cent decline in deaths from congenital disease between 1990 to 2017. Nearly 70 per cent of deaths caused by CHD in 2017 (180,624) were in infants less than one year old.

Most CHD deaths occurred in countries within the low and low-middle socio-demographic index (SDI) quintiles.

Mortality rates get lower as a country's Socio-demographic Index (SDI) rises, the study said.

According to the researchers, birth prevalence of CHD was not related to a country's socio-demographic status, but overall prevalence was much lower in the poorest countries of the world.

This is because children in these countries do not have access to life saving surgical services, they added.

"In high income countries like the United States, we diagnose some heart conditions prenatally during the 20-week ultrasound," said Gerard Martin from Children's National Hospital who contributed to the study.

"For children born in middle- and low-income countries, these data draw stark attention to what we as cardiologists already knew from our own work in these countries -- the lack of diagnostic and treatment tools leads to lower survival rates for children born with CHD," said researcher Craig Sable.

"The UN has prioritised reduction of premature deaths from heart disease, but to meet the target of 'ending preventable deaths of newborns and children under 5 years of age,' health policy makers will need to develop specific accountability measures that address barriers and improve access to care and treatment," the authors wrote.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
International New York Times
July 7,2020

The coronavirus can stay aloft for hours in tiny droplets in stagnant air, infecting people as they inhale, mounting scientific evidence suggests.

This risk is highest in crowded indoor spaces with poor ventilation, and may help explain superspreading events reported in meatpacking plants, churches and restaurants.

It’s unclear how often the virus is spread via these tiny droplets, or aerosols, compared with larger droplets that are expelled when a sick person coughs or sneezes, or transmitted through contact with contaminated surfaces, said Linsey Marr, an aerosol expert at Virginia Tech.

Follow latest updates on the Covid-19 pandemic here

Aerosols are released even when a person without symptoms exhales, talks or sings, according to Marr and more than 200 other experts, who have outlined the evidence in an open letter to the World Health Organization.

What is clear, they said, is that people should consider minimizing time indoors with people outside their families. Schools, nursing homes and businesses should consider adding powerful new air filters and ultraviolet lights that can kill airborne viruses.

What does it mean for a virus to be airborne?

For a virus to be airborne means that it can be carried through the air in a viable form. For most pathogens, this is a yes-no scenario. HIV, too delicate to survive outside the body, is not airborne. Measles is airborne, and dangerously so: It can survive in the air for up to two hours.

For the coronavirus, the definition has been more complicated. Experts agree that the virus does not travel long distances or remain viable outdoors. But evidence suggests it can traverse the length of a room and, in one set of experimental conditions, remain viable for perhaps three hours.

How are aerosols different from droplets?

Aerosols are droplets, droplets are aerosols — they do not differ except in size. Scientists sometimes refer to droplets fewer than 5 microns in diameter as aerosols. (By comparison, a red blood cell is about 5 microns in diameter; a human hair is about 50 microns wide.)

From the start of the pandemic, the WHO and other public health organizations have focused on the virus’s ability to spread through large droplets that are expelled when a symptomatic person coughs or sneezes.

These droplets are heavy, relatively speaking, and fall quickly to the floor or onto a surface that others might touch. This is why public health agencies have recommended maintaining a distance of at least 6 feet from others, and frequent hand washing.

But some experts have said for months that infected people also are releasing aerosols when they cough and sneeze. More important, they expel aerosols even when they breathe, talk or sing, especially with some exertion.

Scientists know now that people can spread the virus even in the absence of symptoms — without coughing or sneezing — and aerosols might explain that phenomenon.

Because aerosols are smaller, they contain much less virus than droplets do. But because they are lighter, they can linger in the air for hours, especially in the absence of fresh air. In a crowded indoor space, a single infected person can release enough aerosolized virus over time to infect many people, perhaps seeding a superspreader event.

For droplets to be responsible for that kind of spread, a single person would have to be within a few feet of all the other people, or to have contaminated an object that everyone else touched. All that seems unlikely to many experts: “I have to do too many mental gymnastics to explain those other routes of transmission compared to aerosol transmission, which is much simpler,” Marr said.

Can I stop worrying about physical distancing and washing my hands?

Physical distancing is still very important. The closer you are to an infected person, the more aerosols and droplets you may be exposed to. Washing your hands often is still a good idea.

What’s new is that those two things may not be enough. “We should be placing as much emphasis on masks and ventilation as we do with hand washing,” Marr said. “As far as we can tell, this is equally important, if not more important.”

Should I begin wearing a hospital-grade mask indoors? And how long is too long to stay indoors?

Health care workers may all need to wear N95 masks, which filter out most aerosols. At the moment, they are advised to do so only when engaged in certain medical procedures that are thought to produce aerosols.

For the rest of us, cloth face masks will still greatly reduce risk, as long as most people wear them. At home, when you’re with your own family or with roommates you know to be careful, masks are still not necessary. But it is a good idea to wear them in other indoor spaces, experts said.

As for how long is safe, that is frustratingly tough to answer. A lot depends on whether the room is too crowded to allow for a safe distance from others and whether there is fresh air circulating through the room.

What does airborne transmission mean for reopening schools and colleges?

This is a matter of intense debate. Many schools are poorly ventilated and are too poorly funded to invest in new filtration systems. “There is a huge vulnerability to infection transmission via aerosols in schools,” said Don Milton, an aerosol expert at the University of Maryland.

Most children younger than 12 seem to have only mild symptoms, if any, so elementary schools may get by. “So far, we don’t have evidence that elementary schools will be a problem, but the upper grades, I think, would be more likely to be a problem,” Milton said.

College dorms and classrooms are also cause for concern.

Milton said the government should think of long-term solutions for these problems. Having public schools closed “clogs up the whole economy, and it’s a major vulnerability,” he said.

“Until we understand how this is part of our national defense, and fund it appropriately, we’re going to remain extremely vulnerable to these kinds of biological threats.”

What are some things I can do to minimize the risks?

Do as much as you can outdoors. Despite the many photos of people at beaches, even a somewhat crowded beach, especially on a breezy day, is likely to be safer than a pub or an indoor restaurant with recycled air.

But even outdoors, wear a mask if you are likely to be close to others for an extended period.

When indoors, one simple thing people can do is to “open their windows and doors whenever possible,” Marr said. You can also upgrade the filters in your home air-conditioning systems, or adjust the settings to use more outdoor air rather than recirculated air.

Public buildings and businesses may want to invest in air purifiers and ultraviolet lights that can kill the virus. Despite their reputation, elevators may not be a big risk, Milton said, compared with public bathrooms or offices with stagnant air where you may spend a long time.

If none of those things are possible, try to minimize the time you spend in an indoor space, especially without a mask. The longer you spend inside, the greater the dose of virus you might inhale.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
March 27,2020

New Delhi, Mar 27: The Centre has restricted sale and distribution of "hydroxychloroquine" declaring it as an essential drug to treat the COVID-19 patients and meet the requirements of emergency arising due to the pandemic.

The Ministry of Health and Family Welfare on Thursday made the announcement making it clear that the order "shall come into force on the date of its publication in the official Gazette".

In the order, the government declared that the Central government is "satisfied that the drug hydroxychloroquine is essential to meet the requirements of emergency arising due to pandemic COVID-19 and in the public interest, it is necessary and expedient to regulate and restrict the sale and distribution of the drug 'hydroxychloroquine' and preparation based thereon for preventing their misuse".

"Now, therefore, in exercise of the powers conferred by Section 26B of the Drugs and Cosmetics Act, 1940 (23 of 1940), the Central government hereby directs that sale by retail of any preparation containing the drug Hydroxychloroquine shall be in accordance with the conditions for sale of drugs specified in Schedule H1 to the Drugs and Cosmetics Rules, 1945."

The order came at a time when the novel coronavirus claimed 16 lives and infected over 600 people across India.

The announcement regarding ban of sale and distribution of the drug was made by the government earlier but it issued an official Gazette notification on Thursday signalling that hydroxychloroquine -- an anti-Malaria drug -- will work as a medicine for treating coronavirus infected patients as well.

Recently, the national task force for COVID-19 constituted by Indian Council for Medical Research (ICMR) has recommended hydroxy-chloroquine as a preventive medication.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.