Blue corn may help fight heart disease, diabetes, BP and cancer: Scientists

January 14, 2017

Washington, Jan 14: Eating blue corn may help protect against metabolic syndrome, cardiovascular disease, diabetes and cancer, a new study carried in rats suggests.

BlueCornIn the study, a rat model of metabolic syndrome fed a high-sugar and high-cholesterol diet and given blue maize extract showed significant improvement in systolic blood pressure, high density lipoprotein (HDL) cholesterol, and triglyceride levels compared to those not given the extract.

The natural antioxidants present in blue maize may help protect against metabolic syndrome, cardiovascular disease, diabetes and cancer, raising interest in using blue maize as a component of functional foods and nutraceuticals, researchers said.

Researchers from Universidad Veracruzana and Instituto Tecnologico de Veracruz in Mexico found that the animals fed a high-sugar and high-cholesterol diet that received blue maize extract had a significantly smaller increase in abdominal fat compared to the abdominal fat gain in rats that did not receive the extract.

“Anti-obesity food materials are always in demand, and this study brings out not only the importance of blue maize in controlling adipocity, but also the potential role of cholesterol in the development of obesity,” said Sampath Parthasarathy, from the University of Central Florida in the US.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
March 3,2020

Taking multiple courses of antibiotics within a short span of time may do people more harm than good, suggests new research which discovered an association between the number of prescriptions for antibiotics and a higher risk of hospital admissions.

Patients who have had 9 or more antibiotic prescriptions for common infections in the previous three years are 2.26 times more likely to go to hospital with another infection in three or more months, said the researchers.

Patients who had two antibiotic prescriptions were 1.23 times more likely, patients who had three to four prescriptions 1.33 times more likely and patients who had five to eight 1.77 times more likely to go to hospital with another infection.

"We don't know why this is, but overuse of antibiotics might kill the good bacteria in the gut (microbiota) and make us more susceptible to infections, for example," said Professor Tjeerd van Staa from the University of Manchester in Britain.

The study, published in the journal BMC Medicine, is based on the data of two million patients in England and Wales.

The patient records, from 2000 to 2016, covered common infections such as upper respiratory tract, urinary tract, ear and chest infections and excluded long term conditions such as cystic fibrosis and chronic lung disease.

The risks of going to hospital with another infection were related to the number of the antibiotic prescriptions in the previous three years.

A course is defined by the team as being given over a period of one or two weeks.

"GPs (general physicians) care about their patients, and over recent years have worked hard to reduce the prescribing of antibiotics,""Staa said.

"But it is clear GPs do not have the tools to prescribe antibiotics effectively for common infections, especially when patients already have previously used antibiotics.

"They may prescribe numerous courses of antibiotics over several years, which according to our study increases the risk of a more serious infection. That in turn, we show, is linked to hospital admissions," Staa added.

It not clear why hospital admissions are linked to higher prescriptions and research is needed to show what or if any biological factors exist, said the research team.

"Our hope is that, however, a tool we are working for GPs, based on patient history, will be able to calculate the risks associated with taking multiple courses of antibiotics," said Francine Jury from the University of Manchester.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 22,2020

A team of scientists has produced first open source all-atom models of full-length COVID-19 Spike protein that facilitates viral entry into host cells – a discovery that can facilitate a faster vaccine and antiviral drug development.

The group from Seoul National University in South Korea, University of Cambridge in the UK and Lehigh University in the US produced the first open-source all-atom models of a full-length S protein.

The researchers say this is of particular importance because the S protein plays a central role in viral entry into cells, making it a main target for vaccine and antiviral drug development.

"Our models are the first full-length SARS-CoV-2 spike (S) protein models that are available to other scientists," said Wonpil Im, a professor in Lehigh University.

"Our team spent days and nights to build these models very carefully from the known cryo-EM structure portions. Modeling was very challenging because there were many regions where simple modeling failed to provide high-quality models," he wrote in a paper published in The Journal of Physical Chemistry B.

Scientists can use the models to conduct innovative and novel simulation research for the prevention and treatment of Covid-19.

Though the coronavirus uses many different proteins to replicate and invade cells, the Spike protein is the major surface protein that it uses to bind to a receptor.

The total number of global COVID-19 cases was nearing 9 million, while the deaths have increased to over 467,000, according to the Johns Hopkins University.

With 2,279,306 cases and 119,967 deaths, the US continues with the world's highest number of COVID-19 infections and fatalities, according to the CSSE.

Brazil comes in the second place with 1,083,341 infections and 50,591 deaths.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 10,2020

Early treatment with the antiviral drug remdesivir has been found to reduce viral load and prevent lung disease in macaques infected with SARS-CoV-2 that causes COVID-19, according to a study.

The findings, published in the journal Nature on Tuesday, support the early use of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.

Researchers from the National Institutes of Health in the US noted that remdesivir has broad antiviral activity and has been shown to be effective against infections with SARS-CoV and MERS-CoV in animal models.

The drug is being tested in human clinical trials for the treatment of COVID-19, they said.

Researcher Emmie de Wit and colleagues investigated the effects of remdesivir treatment in rhesus macaques, a recently established model of SARS-CoV-2 infection.

Two sets of six macaques were inoculated with SARS-CoV-2.

One group was treated with remdesivir 12 hours later -- close to the peak of virus reproduction in the lungs -- and these macaques received treatment every 24 hours until six days after inoculation.

In contrast to the control group, the researchers found that macaques that received remdesivir did not show signs of respiratory disease, and had reduced damage to the lungs.

Viral loads in the lower respiratory tract were also reduced in the treated animals; viral levels were around 100 times lower in the lower-respiratory tract of remdesivir-treated macaques 12 hours after the first dose, they said.

The researchers said that infectious virus could no longer be detected in the treatment group three days after initial infection, but was still detectable in four out of six control animals.

Despite this virus reduction in the lower respiratory tract, no reduction in virus shedding was observed, which indicates that clinical improvement may not equate to a lack of infectiousness, they said.

Dosing of remdesivir in the rhesus macaques is equivalent to that used in humans, the researchers noted.

They cautioned that it is difficult to directly translate the timing of treatment used in corresponding disease stages in humans, because rhesus macaques normally develop only mild disease.

However, researchers said the results indicate that remdesivir treatment of COVID-19 should be initiated as early as possible to achieve the maximum treatment effect.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.