Common toothpaste ingredient triclosan may up colon cancer risk, says study

Agencies
June 2, 2018

A common antimicrobial ingredient triclosan, found in hand soaps and toothpastes, may alter gut bacteria and increase the risk of colon cancer, a study has found. The study, published in the journal Science Translational Medicine, suggests that short-time treatment with low-dose triclosan caused colonic inflammation, and exaggerated disease development of colitis and colitis-associated colon cancer in mice. “These results, for the first time, suggest that triclosan could have adverse effects on gut health,” said Guodong Zhang from the University of Massachusetts Amherst in the US.

Triclosan is among the most widely used antimicrobial ingredients and is found in more than 2,000 consumer products, researchers said. “Because this compound is so widely used, our study suggests that there is an urgent need to further evaluate the impact of triclosan exposure on gut health in preparation for the potential establishment of further regulatory policies,” said Haixia Yang, a postdoctoral fellow in Zhang laboratory. Researchers investigated the effects of triclosan on colonic inflammation and colon cancer using several mouse models. In all mouse models tested, triclosan promoted colonic inflammation and colon tumorigenesis.

“In particular, we used a genetically engineered mouse model which develops spontaneous inflammatory bowel disease or IBD,” said co-author and food scientist Hang Xiao. “Also, treatment with triclosan significantly increased disease development of IBD in the mice, suggesting that IBD patients may need to reduce exposure to this compound,” Xiao said. In a series of experiments designed to explore mechanisms, the research team found that gut microbiota is critical for the observed adverse effects of triclosan.

Feeding triclosan to mice reduced the diversity and changed the composition of the gut microbiome, a result similar to what was observed in a human study conducted by others, Zhang said. Also, triclosan had no effect in a germ-free mouse model where there is no gut microbiome present, nor in a genetically engineered mouse model where there is no Toll-like receptor 4 (TLR4) – an important mediator for host-microbiota communications. “This is strong evidence that gut microbiota is required for the biological effects of triclosan” Zhang said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
April 4,2020

Washington D.C., Apr 4: While consuming a high-diet salt can result in high blood pressure, a recent study has revealed a link between salt-rich diet and weaker immune system.

The study was conducted under the leadership of the University Hospital Bonn, and the results were published in the journal Science Translational Medicine.

The research was conducted on mice that were fed a high-salt diet. Later, they were found to suffer from much more severe bacterial infections.

Human volunteers who consumed an additional six grams of salt per day also showed pronounced immune deficiencies.

The World Health Organization (WHO) has recommended a maximum amount of five grams of salt a day.

It corresponds approximately to one level teaspoon. In reality, however, many Germans exceed this limit considerably. 

Figures from the Robert Koch Institute suggest that on average men consume ten, and women more than eight grams a day.

This means that we reach for the salt shaker much more than is good for us. After all, sodium chloride, which is its chemical name, raises blood pressure and thereby increases the risk of heart attack or stroke.

"We have now been able to prove for the first time that excessive salt intake also significantly weakens an important arm of the immune system," said Prof. Dr. Christian Kurts from the Institute of Experimental Immunology at the University of Bonn.

This finding is unexpected, as some studies point in the opposite direction. For example, infections with certain skin parasites in laboratory animals heal significantly faster if these consume a high-salt diet.

The study also sheds light on the fact that the skin serves as a salt reservoir.

"Our results show that this generalization is not accurate," emphasized Katarzyna Jobin, lead author of the study.

The body keeps the salt concentration in the blood and in the various organs largely constant. Otherwise important biological processes would be impaired. The only major exception is the skin which functions as a salt reservoir of the body. This is why the additional intake of sodium chloride works so well for some skin diseases.

However, other parts of the body are not exposed to the additional salt consumed with food. Instead, it is filtered out by the kidneys and excreted in the urine.

"We examined volunteers who consumed six grams of salt in addition to their daily intake," said Prof. Kurts. This is roughly the amount contained in two fast-food meals, i.e. two burgers and two portions of French fries.

After one week, from the results, it showed that the immune cells coped much worse with bacteria after the test subjects had started to eat a high-salt diet.

In human volunteers, excessive salt intake also resulted in increased glucocorticoid levels.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
May 13,2020

California, May 13: A fasting-mimicking diet could be more effective at treating some types of cancer when combined with vitamin C, suggests a new study conducted by the scientists from USC and the IFOM Cancer Institute in Milan.

In studies on mice, researchers found that the combination delayed tumour progression in multiple mouse models of colorectal cancer; in some mice, it caused disease regression. The results were published in the journal Nature Communications.

"For the first time, we have demonstrated how a completely non-toxic intervention can effectively treat an aggressive cancer," said Valter Longo, the study senior author and the director of the USC Longevity Institute at the USC Leonard Davis School of Gerontology and professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

"We have taken two treatments that are studied extensively as interventions to delay ageing-- a fasting-mimicking diet and vitamin C -- and combined them as a powerful treatment for cancer," added Longo.

The researchers said that while fasting remains a challenging option for cancer patients, a safer, more feasible option is a low-calorie, plant-based diet that causes cells to respond as if the body were fasting.

Their findings suggest that a low-toxicity treatment of fasting-mimicking diet plus vitamin C has the potential to replace more toxic treatments.

Results of prior research on the cancer-fighting potential of vitamin C have been mixed. Recent studies, though, are beginning to show some efficacy, especially in combination with chemotherapy.

In this new study, the research team wanted to find out whether a fasting-mimicking diet could enhance the high-dose vitamin C tumour-fighting action by creating an environment that would be unsustainable for cancer cells but still safe for normal cells.

"Our first in vitro experiment showed remarkable effects. When used alone, fasting-mimicking diet or vitamin C alone reduced cancer cell growth and caused a minor increase in cancer cell death. But when used together, they had a dramatic effect, killing almost all cancerous cells," said Longo.

Longo and his colleagues detected this strong effect only in cancer cells that had a mutation that is regarded as one of the most challenging targets in cancer research.

These mutations in the KRAS gene signal the body is resisting most cancer-fighting treatments, and they reduce a patient's survival rate. KRAS mutations occur in approximately a quarter of all human cancers and are estimated to occur in up to half of all colorectal cancers.

The study also provided clues about why previous studies of vitamin C as a potential anticancer therapy showed limited efficacy. By itself, a vitamin C treatment appears to trigger the KRAS-mutated cells to protect cancer cells by increasing levels of ferritin, a protein that binds iron.

But by reducing levels of ferritin, the scientists managed to increase vitamin C's toxicity for the cancer cells. Amid this finding, the scientists also discovered that colorectal cancer patients with high levels of the iron-binding protein have a lower chance of survival.

"In this study, we observed how fasting-mimicking diet cycles are able to increase the effect of pharmacological doses of vitamin C against KRAS-mutated cancers," said Maira Di Tano, a study co-author at the IFOM, FIRC Institute of Molecular Oncology in Milan, Italy.

"This occurs through the regulation of the levels of iron and of the molecular mechanisms involved in oxidative stress. The results particularly pointed to a gene that regulates iron levels: heme-oxygenase-1," added Tano.

The research team's prior studies showed that fasting and a fasting-mimicking diet slow cancer's progression and make chemotherapy more effective in tumour cells while protecting normal cells from chemotherapy-associated side effects. The combination enhances the immune system's anti-tumour response in breast cancer and melanoma mouse models.

The scientists believe cancer will eventually be treated with low-toxicity drugs in a manner similar to how antibiotics are used to treat infections that kill particular bacteria, but which can be substituted by other drugs if the first is not effective.

To move toward that goal, they say they needed to first test two hypotheses: that their non-toxic combination interventions would work in mice, and that it would look promising for human clinical trials.

In this new study, they said that they've demonstrated both. At least five clinical trials, including one at USC on breast cancer and prostate cancer patients, are now investigating the effects of the fasting-mimicking diets in combination with different cancer-fighting drugs.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 30,2020

Between 30-40 per cent of deaths from studies in intensive care units from different countries are people with diabetes, said Paul Zimmet, Professor of Diabetes, Monash University, Australia.

Zimmet, who is President International Diabetes Federation, added that the actual mechanism as to why COVID-19 may cause diabetes is as yet unknown, however, several possibilities exist. "COVID-19 is a very destructive and cunning virus and causes terrible damage to tissues including the lungs and pancreas," said Zimmet. Below are excerpts from an exclusive chat with IANS.

Why do you say Diabetes is dynamite if a person has been infected with COVID-19?

There have been many deaths in many countries, e.g. Italy, China, the UK and US among people with diabetes after infection with COVID-19 (SARS-Cov-2).

The mortality tends to be mainly in older Type 2 diabetics. Between 30-40 per cent of deaths from studies in intensive care units from different countries are people with diabetes. This outcome and other complications from the virus, particularly pneumonia, are more likely in people with diabetes which is poorly controlled with high blood sugars (poor metabolic control).

Diabetes is often associated with other chronic conditions, including obesity, hypertension and heart disease compounding the risk. These latter conditions all convey higher risk to COVID-19 infections.

ACE-2, which binds to SARS-Cov-2 and allows the virus to enter human cells is also located in organs and tissues involved in glucose metabolism. Is there solid evidence that virus after entering tissues may cause multiple and complex impairment of glucose metabolism?

The actual mechanism as to why COVID-19 may cause diabetes is as yet unknown.

However, several possibilities exist. Firstly, COVID-19 is a very destructive and cunning virus and causes terrible damage to tissues, including the lungs and pancreas.

A new study just published showed that in miniature lab-grown pancreas, and other cells such as liver, made using human stem cells, COVID-19 caused destruction of the pancreas beta cells that produce insulin.

It is possible that the virus causes disruption of the cells by disrupting cellular metabolism. This is possibly the way it brings about new-onset diabetes. ACE-2 exists in high concentration in the lung as this also explains the terrible lung side effects of COVID-19 infections.

Can COVID-19 lead to a new mechanism of diabetes? Probably a new form of diabetes or a new form of disease?

The COVID-19 virus has only been with us for about 5 months and there is a huge amount that we still must learn about its cunning and devastating ways. The purpose of the Global COVIDIAB Diabetes Registry, a joint initiative of Monash University in Australia, and King’s College London is to gain a much better understanding of how common is the appearance of COVID-19 related diabetes, what form does it take be it type 1 or type 2 or a new form, and how common are the complications that we already know e.g. diabetic keto-acidosis, hyperosmolar coma and high insulin requirements are causing high rates of ill health and mortality worldwide. The knowledge gained will aid our understanding for developing strategies to prevent and treat this terrible virus that has caused destruction globally.

Diabetes is one of the most prevalent chronic diseases in India. According to a recent study, sugar levels of diabetic persons increased by 20 per cent during nationwide lockdown in India to contain COVID-19 outbreak. Even after lockdown was lifted, many people are confined within their home. Do you think lack of physical activity will create more problems for diabetics?

My own major research has been on studying populations with high rates of diabetes, including ethnic Indian communities including India, Mauritius, and Fiji so I am very well aware of this. It is now well established that along with diabetes, that associated poor metabolic control of their diabetes places these people at the highest risk for COVID infection and its devastating complications and the associated morbidity and mortality. And these communities have high prevalence of heart disease as well.

Lockdown not only has deleterious effects on metabolic control of the diabetes through reduced opportunities for exercise to be protective serious consequences of SARS-CoV-2 infection, lockdown usually results in disruption of the regular medical care and the regular monitoring of metabolic control. This may also be partly due to the stress and poor compliance, or inability to afford their medications such as insulin. It may also be compounded by inability to access the care during the pandemic. Nevertheless, we now know that poor metabolic control heightens their risk as described above.

You have said diabetes is itself a pandemic just like Covid-19, and the two pandemics could be clashing. How could governments address this problem?

These are “The Times of COVID-19”. Most nations of the world were totally unprepared for a pandemic of this magnitude. They underestimated its potential impact and the destructive nature of the viral infection. This should prompt all countries to upgrade their guidelines to take into account the lessons learnt on infection control including training of staff specialising in infectious diseases and improved public education and taking their communities into their confidence about the terrible nature of COVID-19. The risks of COVID-19 infection need a much higher priority in the general community, particularly for people with chronic conditions such as diabetes, obesity, and cardiac conditions.

Governments are faced with chronic diseases (NCDs) like diabetes and communicable diseases (CDs) like viral and enteric diseases and TB. In general WHO gives the highest priority to communicable diseases and much less attention and funding to chronic diseases like diabetes (I was an adviser to WHO for many years (about 30) on diabetes and obesity and it was very frustrating to deal with this situation).

This attitude to diabetes, for example, has a flow down effect so that diabetes funding in countries by governments, rich and poor, suffered and was insufficient.

So now we have a COVID-19 pandemic and who are those at highest risk, yes people with diabetes and other NCDs, it is very important that now the two, Diabetes and COVID-19 are clashing face-to-face. This is a major issue that WHO and national governments have to face with equal priority’

Stressed people suffering from diabetes run a greater risk of poor blood glucose levels, what do you suggest to these people?

As mentioned in the answer above, stress is an important factor in upsetting the blood sugar (metabolic) control of diabetes. Additive to this is poor compliance with medications and diet. These and potential associated comorbidities due to other chronic conditions are part of the dynamic dynamite mixture.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.