Cure for HIV moves closer as scientists find potential genetic switch

Agencies
December 7, 2018

Washington, Dec 7: A genetic switch that causes HIV hidden inside the cells to replicate can be manipulated to completely eradicate the virus from the human body, a study has found.

Cells harbouring latent HIV are "invisible" to the natural defences of the immune system, said researchers from the University of Illinois at Chicago in the US.

During infection, the DNA of HIV makes its way into the host cell's nucleus and integrates itself into the host genome.

The Tat gene circuit is a key piece of HIV DNA that controls the HIV gene transcription and activation, according to the study published in the journal Proceedings of the National Academy of Sciences.

When activated, it initiates a takeover of the cell's machinery to churn out new copies of the HIV virus, which eventually burst from the cell and infect neighbouring cells.

HIV-specific immune effector cells kill cells infected with HIV, but only when the cells are being used to produce more of the virus, meaning that the Tat gene circuit is switched on.

In cells that are latently infected, the Tat gene circuit is off, and the cell goes about its normal business all the while harbouring quiescent HIV.

"By targeting the Tat gene circuit with drugs or small molecules to activate it, we would be able to cause latently-infected cells to start producing more virus, and then they can be destroyed by the immune system," said Jie Liang, a professor at the University of Illinois.

So far, there are no drugs successfully targeting this circuit, researchers said.

People infected with the HIV virus can live relatively normal lives with exceedingly low or even undetectable viral loads thanks to powerful antiretroviral therapies that work to suppress viral replication.

However, even in people where the virus is undetectable, it doesn't mean it's completely absent.

The HIV virus can hide in cells in an inactivated state, meaning it isn't actively replicating.

This is a dire situation and makes life-long antiretroviral therapy the only option for HIV infected patients.

"It is extremely difficult to flush latently-infected cells out of their latency," Liang said.

Techniques developed to reactivate latent HIV-infected cells so that they become susceptible to the body's natural immune response or to drug therapies have had mixed results.

This is mostly because the technique, known as "shock and kill," relies on a class of drugs called HDAC inhibitors that come with severe adverse effects, researchers said.

"We need to better understand the mechanisms that regulate HIV latency so we can identify new opportunities for intervention and develop better drugs that can either lock viral particles in a latent state, or kill latent cells, or both," Liang said.

The Tat gene circuit has a random probability of being active or inactive, and the switch from inactive to active can happen spontaneously.

"In HIV-infected cells, reactivation of the Tat gene circuit is still a very rare event," Liang said.

The researchers developed advanced computational algorithms to study the Tat gene circuit under different conditions.

"Using different models and algorithms, we were able to accurately map a 'probability landscape' of the cellular reactions that can impact Tat gene circuit reactivation, and our results suggest new ways of targeting latent cells that may lead to the eradication of the HIV virus from a host," Liang said.

Researchers identified ways to manipulate the Tat gene circuit so that the "shock and kill" technique would be more effective.

They also looked at a "block and lock" strategy, where latent viral particles are locked into latency by permanently blocking activation of the Tat gene circuit.

"Our results suggest that by controlling HIV latency through manipulation of the Tat gene circuit, effective therapeutic strategies can be identified that would one day provide a cure for HIV," Liang said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
March 5,2020

Bergen, Mar 5: Divorce of parents may impact the academics of children negatively, suggests a new study.

According to the study, parental divorce is associated with a lower grade point average (GPA) among adolescents, with a stronger association seen in teens with more educated mothers.

The study was published in the journal PLOS ONE.

Children and adolescents with divorced or separated parents are known to do less well in school than adolescents with nondivorced parents and to be less well-adjusted, on average, across a spectrum of physical and mental health outcomes.

In the new study, researchers used data from the youth@hordaland study, a population-based survey of adolescents aged 16-19 conducted in the spring of 2012 in Hordaland County, Norway.

19,439 adolescents were invited to participate and 10,257 agreed; of those, 9,166 are included in the current study.

Overall, adolescents with divorced parents had a 0.3 point lower GPA (standard error 0.022, p<0.01) than their peers.

Controlling for parental education reduced the effect by 0.06 points to 0.240 (SE 0.021, p<0.01). This heterogeneity was predominantly driven by maternal education levels, the researchers found.

After controlling for paternal education and income measures, divorce was associated with a 0.120 point decrease in GPA among adolescents whose mothers had a secondary school education level; a 0.175 point decrease when mothers had a Bachelor's level education; and a 0.209 point decrease when mothers had a Master's or PhD level education (all estimates relative to adolescents with a mother who had a basic level of education, such as ISCED 0-2).

Due to the cross-sectional structure of the study, researchers could not investigate specific changes between pre- and post-divorce family life, and future studies are needed to investigate potential mechanisms (such as reduced parental monitoring or school-involvement) which might drive this finding.

Nonetheless, this study provides new evidence that the negative association between divorce and teens' GPA is especially strong in families with more educated mothers.

"Among Norwegian adolescents, parental divorce was hardly associated with GPA among youth whose parents have low educational qualifications. In contrast, among adolescents with educated or highly educated mothers, divorce was significantly associated with lower GPA," said the authors.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
April 14,2020

There is no evidence that the Bacille Calmette-Guerin (BCG) vaccine, which is primarily used against tuberculosis, protects people against infection with the novel coronavirus, the World Health Organization (WHO) said.

The WHO therefore didn't recommend BCG vaccination for the prevention of COVID-19 in the absence of evidence, according to its daily situation report on Monday, Xinhua news agency reported.

"There is experimental evidence from both animal and human studies that the BCG vaccine has non-specific effects on the immune system. These effects have not been well characterized and their clinical relevance remains unknown," WHO stated.

Two clinical trials addressing the question are underway, and WHO will evaluate the evidence when it is available, it noted.

BCG vaccination prevents severe forms of tuberculosis in children and diversion of local supplies may result in an increase of disease and deaths from the tuberculosis, it warned.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
May 14,2020

COVID-19 mostly kills through an overreaction of the immune system, whose function is precisely to fight infections, say scientists who have decoded the mechanisms, symptoms, and diagnosis of the disease caused by the SARS-Cov-2 coronavirus.

In a study published in the journal Frontiers in Public Health, the researchers explained step-by-step how the virus infects the airways, multiplies inside cells, and in severe cases causes the immune defences to overshoot with a "cytokine storm".

This storm is an over-activation of white blood cells, which release too-great amounts of cytokines -- inflammation-stimulating molecules --into the blood, they said.

"Similar to what happens after infection with SARS and MERS, data show that patients with severe COVID-19 may have a cytokine storm syndrome," said study author Daishun Liu, Professor at Zunyi Medical University in China.

"The rapidly increased cytokines attract an excess of immune cells such as lymphocytes and neutrophils, resulting in an infiltration of these cells into lung tissue and thus cause lung injury," Liu said.

The researchers explained that the cytokine storm ultimately causes high fever, excessive leakiness of blood vessels, and blood clotting inside the body.

It also causes extremely low blood pressure, lack of oxygen and excess acidity of the blood, and build-up of fluids in the lungs, they said.

The researchers noted that white blood cells are misdirected to attack and inflame even healthy tissue, leading to failure of the lungs, heart, liver, intestines, kidneys, and genitals.

This multiple organ dysfunction syndrome (MODS) may worsen and shutdown the lungs, a condition called acute respiratory distress syndrome, (ARDS), they said.

This, the researchers explained, happens due to the formation of a so-called hyaline membrane -- composed of debris of proteins and dead cells -- lining the lungs, which makes absorption of oxygen difficult.

Most deaths due to COVID-19 are therefore due to respiratory failure, they said.

The researchers explained that in the absence of a specific antiviral cure for COVID-19, the goal of treatment must be to the fight the symptoms, and lowering the mortality rate through intensive maintenance of organ function.

For example, an artificial liver blood purification system or renal replacement therapy can be used to filter the blood through mechanical means, they said.

The team noted that especially important are methods to supplement or replace lung function, for example with non-invasive mechanical ventilation through a mask, ventilation through a tube into the windpipe, the administration of heated and humidified oxygen via a tube in the nose, or a heart-lung bypass.

The researchers stressed the importance of preventing secondary infections.

They noted that SARS-Cov-2 also invades the intestines, where it causes inflammation and leakiness of the gut lining, allowing the opportunistic entry of other disease-causing microorganisms.

The researchers advocate that this should be prevented with nutritional support, for example with probiotics -- beneficial bacteria that protect against the establishment of harmful ones -- and nutrients and amino acids to improve the immune defences and function of the intestine.

"Because treatment for now relies on aggressive treatment of symptoms, preventative protection against secondary infections, such as bacteria and fungi, is particularly important to support organ function, especially in the heart, kidneys, and liver, to try and avoid further deterioration of their condition," Liu added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.