Has Cancer found its bane in Vitamin C?

January 11, 2017

Washington, Jan 11: US researchers have found that giving Vitamin C intravenously can produce super-high concentration in the blood, which has ability to attack cancer cells.

cancerThe findings, published recently in the journal Redox Biology, revealed that vitamin C breaks down easily, generating hydrogen peroxide, a so-called reactive oxygen species that can damage tissue and DNA.

Researchers from University of Iowa Health Care in the US also showed that tumor cells are much less capable of removing the damaging hydrogen peroxide than normal cells.

They also found that giving vitamin C intravenously--and bypassing normal gut metabolism and excretion pathways--creates blood levels that are 100 - 500 times higher than levels seen with oral ingestion.

"In this paper we demonstrate that cancer cells are much less efficient in removing hydrogen peroxide than normal cells. Thus, cancer cells are much more prone to damage and death from a high amount of hydrogen peroxide," said Garry Buettner.

"This explains how the very, very high levels of vitamin C used in our clinical trials do not affect normal tissue, but can be damaging to tumor tissue," Buettner added.

They examined how high-dose vitamin C (also known as ascorbate) kills cancer cells.

The team tested the approach in clinical trials for pancreatic cancer and lung cancer that combine high-dose, intravenous vitamin C with standard chemotherapy or radiation.

The new study shows that an enzyme called catalase is the central route for removing hydrogen peroxide generated by decomposing vitamin C.

The researchers discovered that cells with lower amounts of catalase activity were more susceptible to damage and death when they were exposed to high amounts of vitamin C.

"Our results suggest that cancers with low levels of catalase are likely to be the most responsive to high-dose vitamin C therapy, whereas cancers with relatively high levels of catalase may be the least responsive," he explained.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 10,2020

Early treatment with the antiviral drug remdesivir has been found to reduce viral load and prevent lung disease in macaques infected with SARS-CoV-2 that causes COVID-19, according to a study.

The findings, published in the journal Nature on Tuesday, support the early use of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.

Researchers from the National Institutes of Health in the US noted that remdesivir has broad antiviral activity and has been shown to be effective against infections with SARS-CoV and MERS-CoV in animal models.

The drug is being tested in human clinical trials for the treatment of COVID-19, they said.

Researcher Emmie de Wit and colleagues investigated the effects of remdesivir treatment in rhesus macaques, a recently established model of SARS-CoV-2 infection.

Two sets of six macaques were inoculated with SARS-CoV-2.

One group was treated with remdesivir 12 hours later -- close to the peak of virus reproduction in the lungs -- and these macaques received treatment every 24 hours until six days after inoculation.

In contrast to the control group, the researchers found that macaques that received remdesivir did not show signs of respiratory disease, and had reduced damage to the lungs.

Viral loads in the lower respiratory tract were also reduced in the treated animals; viral levels were around 100 times lower in the lower-respiratory tract of remdesivir-treated macaques 12 hours after the first dose, they said.

The researchers said that infectious virus could no longer be detected in the treatment group three days after initial infection, but was still detectable in four out of six control animals.

Despite this virus reduction in the lower respiratory tract, no reduction in virus shedding was observed, which indicates that clinical improvement may not equate to a lack of infectiousness, they said.

Dosing of remdesivir in the rhesus macaques is equivalent to that used in humans, the researchers noted.

They cautioned that it is difficult to directly translate the timing of treatment used in corresponding disease stages in humans, because rhesus macaques normally develop only mild disease.

However, researchers said the results indicate that remdesivir treatment of COVID-19 should be initiated as early as possible to achieve the maximum treatment effect.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 30,2020

New York, Jul 30: Can the coronavirus spread through the air? Yes, it's possible.

The World Health Organisation recently acknowledged the possibility that Covid-19 might be spread in the air under certain conditions.

Recent Covid-19 outbreaks in crowded indoor settings — restaurants, nightclubs and choir practices — suggest the virus can hang around in the air long enough to potentially infect others if social distancing measures are not strictly enforced.

Experts say the lack of ventilation in these situations is thought to have contributed to spread, and might have allowed the virus to linger in the air longer than normal.

In a report published in May, researchers found that talking produced respiratory droplets that could remain in the air in a closed environment for about eight to 14 minutes.

The WHO says those most at risk from airborne spread are doctors and nurses who perform specialized procedures such as inserting a breathing tube or putting patients on a ventilator.

Medical authorities recommend the use of protective masks and other equipment when doing such procedures.

Scientists maintain it's far less risky to be outside than indoors because virus droplets disperse in the fresh air, reducing the chances of Covid-19 transmission.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 22,2020

A team of scientists has produced first open source all-atom models of full-length COVID-19 Spike protein that facilitates viral entry into host cells – a discovery that can facilitate a faster vaccine and antiviral drug development.

The group from Seoul National University in South Korea, University of Cambridge in the UK and Lehigh University in the US produced the first open-source all-atom models of a full-length S protein.

The researchers say this is of particular importance because the S protein plays a central role in viral entry into cells, making it a main target for vaccine and antiviral drug development.

"Our models are the first full-length SARS-CoV-2 spike (S) protein models that are available to other scientists," said Wonpil Im, a professor in Lehigh University.

"Our team spent days and nights to build these models very carefully from the known cryo-EM structure portions. Modeling was very challenging because there were many regions where simple modeling failed to provide high-quality models," he wrote in a paper published in The Journal of Physical Chemistry B.

Scientists can use the models to conduct innovative and novel simulation research for the prevention and treatment of Covid-19.

Though the coronavirus uses many different proteins to replicate and invade cells, the Spike protein is the major surface protein that it uses to bind to a receptor.

The total number of global COVID-19 cases was nearing 9 million, while the deaths have increased to over 467,000, according to the Johns Hopkins University.

With 2,279,306 cases and 119,967 deaths, the US continues with the world's highest number of COVID-19 infections and fatalities, according to the CSSE.

Brazil comes in the second place with 1,083,341 infections and 50,591 deaths.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.