Just one or two experiences with marijuana may alter teen brains

Agencies
January 16, 2019

Jan 16: Teens who use pot just one or two times may end up with changes to their brains, a new study finds.

There were clear differences on brain scans between teens who said they had tried cannabis a couple of times and those who completely eschewed the drug, researchers reported in the Journal of Neuroscience.

There have been hints that even small amounts of pot at a young age might impact the brain, said the study’s lead author, Catherine Orr, a lecturer at the Swinburne University of Technology in Melbourne, Australia. “Research using animals to study the effects of cannabis on the brain have shown effects at very low levels, so we had reason to believe that brain changes might occur at even the earliest stages of cannabis use,” Orr said in an email.

Still, she said, “I was surprised by the extent of the effects.”

With an estimated 35 percent of U.S. teens using cannabis, the new findings are concerning, the researchers noted.

Orr and her colleagues saw widespread increases in the volume of grey matter in brain regions that are rich with cannabinoid receptors. Grey matter, which is made up of nerve cell bodies, is involved in sensory perception and muscle control.

To take a closer look at the impact of mild marijuana use in developing brains, Orr’s team analyzed brain scans gathered as part of the larger IMAGEN study, which was designed to look into adolescent brain development.

The researchers analyzed images from 46 14-year-olds who said they had used marijuana once or twice, as well as images from 46 non-cannabis using teens matched “on age, sex, handedness, pubertal status, IQ, socioeconomic status, and use of alcohol and tobacco,” Orr said.

The researchers spotted clear differences between the two groups, which they suspect are due to the low-level pot use. They acknowledge that the study didn’t actually prove that marijuana led to the differences seen in the scans. It’s possible that those who chose to use weed were different to begin with and that the marijuana hadn’t played a role in brain development.

To try to address this question, the researchers analyzed scans from a third group of teens who had not tried marijuana before they had their brain scans at age 14. By age 16, 69 of these kids said they had used marijuana at least 10 times. But their brain scans at age 14 looked no different than brain scans of other kids who had not taken up cannabis by age 16 - which meant there wasn’t any inborn brain difference that would have predicted who would later become a pot user.

There may be serious implications to the brain changes noted by the researchers. “In our sample of cannabis users, the greater volumes in the affected parts of the brain were associated with reductions in psychomotor sped and perceptual reasoning and with increased levels of anxiety two years later,” Orr said.

The reason for the higher volume of grey matter in cannabinoid-rich regions of the brain may be related to a normal process called “pruning” which may go awry when kids use marijuana, Orr said. As young brains develop, unnecessary or defective neurons are pruned away, she explained. When the system doesn’t work correctly, those cells remain in place.

The new findings are a step toward understanding the impact of cannabis on young brains, said Dr. Michael Lynch, a toxicologist and emergency medicine physician and director of the Pittsburgh Poison Center at the University of Pittsburgh Medical Center. “It’s important that there was a change,” Lynch said. “Adolescent brains are going to be more vulnerable to anything drug or environmentally related.”

If pruning isn’t working right, “the brain may not work as efficiently as it should,” Lynch said. “But I don’t think we can make a final determination on that from this study.”

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 30,2020

Between 30-40 per cent of deaths from studies in intensive care units from different countries are people with diabetes, said Paul Zimmet, Professor of Diabetes, Monash University, Australia.

Zimmet, who is President International Diabetes Federation, added that the actual mechanism as to why COVID-19 may cause diabetes is as yet unknown, however, several possibilities exist. "COVID-19 is a very destructive and cunning virus and causes terrible damage to tissues including the lungs and pancreas," said Zimmet. Below are excerpts from an exclusive chat with IANS.

Why do you say Diabetes is dynamite if a person has been infected with COVID-19?

There have been many deaths in many countries, e.g. Italy, China, the UK and US among people with diabetes after infection with COVID-19 (SARS-Cov-2).

The mortality tends to be mainly in older Type 2 diabetics. Between 30-40 per cent of deaths from studies in intensive care units from different countries are people with diabetes. This outcome and other complications from the virus, particularly pneumonia, are more likely in people with diabetes which is poorly controlled with high blood sugars (poor metabolic control).

Diabetes is often associated with other chronic conditions, including obesity, hypertension and heart disease compounding the risk. These latter conditions all convey higher risk to COVID-19 infections.

ACE-2, which binds to SARS-Cov-2 and allows the virus to enter human cells is also located in organs and tissues involved in glucose metabolism. Is there solid evidence that virus after entering tissues may cause multiple and complex impairment of glucose metabolism?

The actual mechanism as to why COVID-19 may cause diabetes is as yet unknown.

However, several possibilities exist. Firstly, COVID-19 is a very destructive and cunning virus and causes terrible damage to tissues, including the lungs and pancreas.

A new study just published showed that in miniature lab-grown pancreas, and other cells such as liver, made using human stem cells, COVID-19 caused destruction of the pancreas beta cells that produce insulin.

It is possible that the virus causes disruption of the cells by disrupting cellular metabolism. This is possibly the way it brings about new-onset diabetes. ACE-2 exists in high concentration in the lung as this also explains the terrible lung side effects of COVID-19 infections.

Can COVID-19 lead to a new mechanism of diabetes? Probably a new form of diabetes or a new form of disease?

The COVID-19 virus has only been with us for about 5 months and there is a huge amount that we still must learn about its cunning and devastating ways. The purpose of the Global COVIDIAB Diabetes Registry, a joint initiative of Monash University in Australia, and King’s College London is to gain a much better understanding of how common is the appearance of COVID-19 related diabetes, what form does it take be it type 1 or type 2 or a new form, and how common are the complications that we already know e.g. diabetic keto-acidosis, hyperosmolar coma and high insulin requirements are causing high rates of ill health and mortality worldwide. The knowledge gained will aid our understanding for developing strategies to prevent and treat this terrible virus that has caused destruction globally.

Diabetes is one of the most prevalent chronic diseases in India. According to a recent study, sugar levels of diabetic persons increased by 20 per cent during nationwide lockdown in India to contain COVID-19 outbreak. Even after lockdown was lifted, many people are confined within their home. Do you think lack of physical activity will create more problems for diabetics?

My own major research has been on studying populations with high rates of diabetes, including ethnic Indian communities including India, Mauritius, and Fiji so I am very well aware of this. It is now well established that along with diabetes, that associated poor metabolic control of their diabetes places these people at the highest risk for COVID infection and its devastating complications and the associated morbidity and mortality. And these communities have high prevalence of heart disease as well.

Lockdown not only has deleterious effects on metabolic control of the diabetes through reduced opportunities for exercise to be protective serious consequences of SARS-CoV-2 infection, lockdown usually results in disruption of the regular medical care and the regular monitoring of metabolic control. This may also be partly due to the stress and poor compliance, or inability to afford their medications such as insulin. It may also be compounded by inability to access the care during the pandemic. Nevertheless, we now know that poor metabolic control heightens their risk as described above.

You have said diabetes is itself a pandemic just like Covid-19, and the two pandemics could be clashing. How could governments address this problem?

These are “The Times of COVID-19”. Most nations of the world were totally unprepared for a pandemic of this magnitude. They underestimated its potential impact and the destructive nature of the viral infection. This should prompt all countries to upgrade their guidelines to take into account the lessons learnt on infection control including training of staff specialising in infectious diseases and improved public education and taking their communities into their confidence about the terrible nature of COVID-19. The risks of COVID-19 infection need a much higher priority in the general community, particularly for people with chronic conditions such as diabetes, obesity, and cardiac conditions.

Governments are faced with chronic diseases (NCDs) like diabetes and communicable diseases (CDs) like viral and enteric diseases and TB. In general WHO gives the highest priority to communicable diseases and much less attention and funding to chronic diseases like diabetes (I was an adviser to WHO for many years (about 30) on diabetes and obesity and it was very frustrating to deal with this situation).

This attitude to diabetes, for example, has a flow down effect so that diabetes funding in countries by governments, rich and poor, suffered and was insufficient.

So now we have a COVID-19 pandemic and who are those at highest risk, yes people with diabetes and other NCDs, it is very important that now the two, Diabetes and COVID-19 are clashing face-to-face. This is a major issue that WHO and national governments have to face with equal priority’

Stressed people suffering from diabetes run a greater risk of poor blood glucose levels, what do you suggest to these people?

As mentioned in the answer above, stress is an important factor in upsetting the blood sugar (metabolic) control of diabetes. Additive to this is poor compliance with medications and diet. These and potential associated comorbidities due to other chronic conditions are part of the dynamic dynamite mixture.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 2,2020

The American pharmaceutical giant Pfizer Inc. and the European biotechnology company BioNTech SE have conducted an experimental trial of a COVID-19 vaccine candidate and found it to be safe, well-tolerated, and capable of generating antibodies in the patients.

The study, which is yet to be peer-reviewed, describes the preliminary clinical data for the candidate vaccine -- nucleoside-modified messenger RNA (modRNA), BNT162b1.

It said the amount of antibodies produced in participants after they received two shots of the vaccine candidate was greater than that reported in patients receiving convalescent plasma from recovered COVID-19 patients.

"I was glad to see Pfizer put up their phase 1 trial data today. Virus neutralizing antibody titers achieved after two doses are greater than convalescent antibody titers," tweeted Peter Hotez, a vaccine scientist from Baylor College of Medicine in the US, who was unrelated to the study.

Researchers, including those from New York University in the US, who were involved in the study, said the candidate vaccine enables human cells to produce an optimised version of the receptor binding domain (RBD) antigen -- a part of the spike (S) protein of SARS-CoV-2 which it uses to gain entry into human cells.

"Robust immunogenicity was observed after vaccination with BNT162b1," the scientists noted in the study.

They said the program is evaluating at least four experimental vaccines, each of which represents a unique combination of mRNA format and target component of the novel coronavirus, SARS-CoV-2.

Based on the study's findings, they said BNT162b1 could be administered in a quantity that was well tolerated, potentially generating a dose dependent production of immune system molecules in the patients.

The research noted that patients treated with the vaccine candidate produced nearly 1.8 to 2.8 fold greater levels of RBD-binding antibodies that could neutralise SARS-CoV-2.

"We are encouraged by the clinical data of BNT162b1, one of four mRNA constructs we are evaluating clinically, and for which we have positive, preliminary, topline findings," said Kathrin U. Jansen, study co-author and Senior Vice President and Head of Vaccine Research & Development, Pfizer.

"We look forward to publishing our clinical data in a peer-reviewed journal as quickly as possible," Jansen said.

According to Ugur Sahin, CEO and Co-founder of BioNTech, and another co-author of the study, the preliminary data are encouraging as they provide an initial signal that BNT162b1 is able to produce neutralising antibody responses in humans.

He said the immune response observed in the patients treated with the experimental vaccine are at, or above, the levels observed from convalescent sera, adding that it does so at "relatively low dose levels."

"We look forward to providing further data updates on BNT162b1," Sahin said.

According to a statement from Pfizer, the initial part of the study included 45 healthy adults 18 to 55 years of age.

It said the priliminary data for BNT162b1 was evaluated in 24 subjects who received two injections of 10 microgrammes ( g) and 30 g -- 12 subjects who received a single injection of 100 g, and 9 subjects who received two doses of a dummy vaccine.

The study noted that participants received two doses, 21 days apart, of placebo, 10 g or 30 g of BNT162b1, or received a single dose of 100 g of the vaccine candidate.

According to the scientists, the highest neutralising concentrations of antibodies were observed seven days after the second dose of 10 g, or 30 g on day 28 after vaccination.

They said the neutralising concentrations were 1.8- and 2.8-times that observed in a panel of 38 blood samples from people who had contracted the virus.

In all 24 subjects who received two vaccinations at 10 g and 30 g dose levels, elevation of RBD-binding antibody concentrations was observed after the second injection, the study noted.

It said these concentrations are 8- and 46.3-times the concentration seen in a panel of 38 blood samples from those infected with the novel coronavirus.

At the 10 g or 30 g dose levels, the scientists said adverse reactions, including low grade fever, were more common after the second dose than the first dose.

According to Pfizer, local reactions and systemic events after injection with 10 g and 30 g of BNT162b1 were "dose-dependent, generally mild to moderate, and transient."

It said the most commonly reported local reaction was injection site pain, which was mild to moderate, except in one of 12 subjects who received a 100 g dose, which was severe.

The study noted that there was no serious adverse events reported by the patients.

Citing the limitations of the research, the scientists said the immunity generated in the participants in the form of the T cells and B cells of their immune system, and the level of immunity needed to protect one from COVID-19 are unknown.

With these preliminary data, along with additional data being generated, Pfizer noted in the statement that the two companies will determine a dose level, and select among multiple vaccine candidates to seek to progress to a large, global safety and efficacy trial, which may involve up to 30,000 healthy participants if regulatory approval to proceed is received.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
International New York Times
July 7,2020

The coronavirus can stay aloft for hours in tiny droplets in stagnant air, infecting people as they inhale, mounting scientific evidence suggests.

This risk is highest in crowded indoor spaces with poor ventilation, and may help explain superspreading events reported in meatpacking plants, churches and restaurants.

It’s unclear how often the virus is spread via these tiny droplets, or aerosols, compared with larger droplets that are expelled when a sick person coughs or sneezes, or transmitted through contact with contaminated surfaces, said Linsey Marr, an aerosol expert at Virginia Tech.

Follow latest updates on the Covid-19 pandemic here

Aerosols are released even when a person without symptoms exhales, talks or sings, according to Marr and more than 200 other experts, who have outlined the evidence in an open letter to the World Health Organization.

What is clear, they said, is that people should consider minimizing time indoors with people outside their families. Schools, nursing homes and businesses should consider adding powerful new air filters and ultraviolet lights that can kill airborne viruses.

What does it mean for a virus to be airborne?

For a virus to be airborne means that it can be carried through the air in a viable form. For most pathogens, this is a yes-no scenario. HIV, too delicate to survive outside the body, is not airborne. Measles is airborne, and dangerously so: It can survive in the air for up to two hours.

For the coronavirus, the definition has been more complicated. Experts agree that the virus does not travel long distances or remain viable outdoors. But evidence suggests it can traverse the length of a room and, in one set of experimental conditions, remain viable for perhaps three hours.

How are aerosols different from droplets?

Aerosols are droplets, droplets are aerosols — they do not differ except in size. Scientists sometimes refer to droplets fewer than 5 microns in diameter as aerosols. (By comparison, a red blood cell is about 5 microns in diameter; a human hair is about 50 microns wide.)

From the start of the pandemic, the WHO and other public health organizations have focused on the virus’s ability to spread through large droplets that are expelled when a symptomatic person coughs or sneezes.

These droplets are heavy, relatively speaking, and fall quickly to the floor or onto a surface that others might touch. This is why public health agencies have recommended maintaining a distance of at least 6 feet from others, and frequent hand washing.

But some experts have said for months that infected people also are releasing aerosols when they cough and sneeze. More important, they expel aerosols even when they breathe, talk or sing, especially with some exertion.

Scientists know now that people can spread the virus even in the absence of symptoms — without coughing or sneezing — and aerosols might explain that phenomenon.

Because aerosols are smaller, they contain much less virus than droplets do. But because they are lighter, they can linger in the air for hours, especially in the absence of fresh air. In a crowded indoor space, a single infected person can release enough aerosolized virus over time to infect many people, perhaps seeding a superspreader event.

For droplets to be responsible for that kind of spread, a single person would have to be within a few feet of all the other people, or to have contaminated an object that everyone else touched. All that seems unlikely to many experts: “I have to do too many mental gymnastics to explain those other routes of transmission compared to aerosol transmission, which is much simpler,” Marr said.

Can I stop worrying about physical distancing and washing my hands?

Physical distancing is still very important. The closer you are to an infected person, the more aerosols and droplets you may be exposed to. Washing your hands often is still a good idea.

What’s new is that those two things may not be enough. “We should be placing as much emphasis on masks and ventilation as we do with hand washing,” Marr said. “As far as we can tell, this is equally important, if not more important.”

Should I begin wearing a hospital-grade mask indoors? And how long is too long to stay indoors?

Health care workers may all need to wear N95 masks, which filter out most aerosols. At the moment, they are advised to do so only when engaged in certain medical procedures that are thought to produce aerosols.

For the rest of us, cloth face masks will still greatly reduce risk, as long as most people wear them. At home, when you’re with your own family or with roommates you know to be careful, masks are still not necessary. But it is a good idea to wear them in other indoor spaces, experts said.

As for how long is safe, that is frustratingly tough to answer. A lot depends on whether the room is too crowded to allow for a safe distance from others and whether there is fresh air circulating through the room.

What does airborne transmission mean for reopening schools and colleges?

This is a matter of intense debate. Many schools are poorly ventilated and are too poorly funded to invest in new filtration systems. “There is a huge vulnerability to infection transmission via aerosols in schools,” said Don Milton, an aerosol expert at the University of Maryland.

Most children younger than 12 seem to have only mild symptoms, if any, so elementary schools may get by. “So far, we don’t have evidence that elementary schools will be a problem, but the upper grades, I think, would be more likely to be a problem,” Milton said.

College dorms and classrooms are also cause for concern.

Milton said the government should think of long-term solutions for these problems. Having public schools closed “clogs up the whole economy, and it’s a major vulnerability,” he said.

“Until we understand how this is part of our national defense, and fund it appropriately, we’re going to remain extremely vulnerable to these kinds of biological threats.”

What are some things I can do to minimize the risks?

Do as much as you can outdoors. Despite the many photos of people at beaches, even a somewhat crowded beach, especially on a breezy day, is likely to be safer than a pub or an indoor restaurant with recycled air.

But even outdoors, wear a mask if you are likely to be close to others for an extended period.

When indoors, one simple thing people can do is to “open their windows and doors whenever possible,” Marr said. You can also upgrade the filters in your home air-conditioning systems, or adjust the settings to use more outdoor air rather than recirculated air.

Public buildings and businesses may want to invest in air purifiers and ultraviolet lights that can kill the virus. Despite their reputation, elevators may not be a big risk, Milton said, compared with public bathrooms or offices with stagnant air where you may spend a long time.

If none of those things are possible, try to minimize the time you spend in an indoor space, especially without a mask. The longer you spend inside, the greater the dose of virus you might inhale.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.