Mars Likely to Have Enough Oxygen to Support Life: Study

Agencies
October 23, 2018

Oct 23: Salty water just below the surface of Mars could hold enough oxygen to support the kind of microbial life that emerged and flourished on Earth billions of years ago, researchers reported Monday.

In some locations, the amount of oxygen available could even keep alive a primitive, multicellular animal such as a sponge, they reported in the journal Nature Geosciences.

"We discovered that brines" - water with high concentrations of salt - "on Mars can contain enough oxygen for microbes to breathe," said lead author Vlada Stamenkovic, a theoretical physicist at the Jet Propulsion Laboratory in California.

"This fully revolutionises our understanding of the potential for life on Mars, today and in the past," he told AFP.

Up to now, it had been assumed that the trace amounts of oxygen on Mars were insufficient to sustain even microbial life.

"We never thought that oxygen could play a role for life on Mars due to its rarity in the atmosphere, about 0.14 percent," Stamenkovic said.

By comparison, the life-giving gas makes up 21 percent of the air we breathe.

On Earth, aerobic -- that is, oxygen breathing -- life forms evolved together with photosynthesis, which converts CO2 into O2. The gas played a critical role in the emergence of complex life, notable after the so-called Great Oxygenation Event some 2.35 billion years ago.

But our planet also harbours microbes - at the bottom of the ocean, in boiling hotsprings -- that subsist in environments deprived of oxygen.

"That's why -- whenever we thought of life on Mars -- we studied the potential for anaerobic life," Stamenkovic.

Life on Mars?

The new study began with the discovery by NASA's Curiosity Mars rover of manganese oxides, which are chemical compounds that can only be produced with a lot of oxygen.

Curiosity, along with Mars orbiters, also established the presence of brine deposits, with notable variations in the elements they contained.

A high salt content allows for water to remain liquid -- a necessary condition for oxygen to be dissolved - at much lower temperatures, making brines a happy place for microbes.

Depending on the region, season and time of day, temperatures on the Red Planet can vary between minus 195 and 20 degrees Celsius (minus 319 to 68 degrees Fahrenheit).

The researchers devised a first model to describe how oxygen dissolves in salty water at temperatures below freezing.

A second model estimated climate changes on Mars over the last 20 million years, and over the next 10 million years.

Taken together, the calculations showed which regions on the Red Planet are most likely to produce brine-based oxygen, data that could help determine the placement of future probes.

"Oxygen concentrations [on Mars] are orders of magnitude" - several hundred times - "greater than needed by aerobic, or oxygen-breathing - microbes," the study concluded.

"Our results do not imply that there is life on Mars," Stamenkovic cautioned. "But they show that the Martian habitability is affected by the potential of dissolved oxygen."

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 2,2020

Paris, Jul 2: Several interacting exoplanets have already been spotted by satellites. But a new breakthrough has been achieved with, for the first time, the detection directly from the ground of an extrasolar system of this type.

An international collaboration including CNRS researchers has discovered an unusual planetary system, dubbed WASP-148, using the French instrument SOPHIE at the Observatoire de Haute-Provence (CNRS/Aix-Marseille Universite).

The scientists analysed the star's motion and concluded that it hosted two planets, WASP-148b and WASP-148c. The observations showed that the two planets were strongly interacting, which was confirmed from other data.

Whereas the first planet, WASP-148b, orbits its star in nearly nine days, the second one, WASP-148c, takes four times longer. This ratio between the orbital periods implies that the WASP-148 system is close to resonance, meaning that there is enhanced gravitational interaction between the two planets. And it turns out that the astronomers did indeed detect variations in the orbital periods of the planets.

While a single planet, uninfluenced by a second one, would move with a constant period, WASP-148b and WASP-148c undergo acceleration and deceleration that provides evidence of their interaction.

The study will shortly be published in the journal Astronomy & Astrophysics.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 18,2020

New Delhi, Jul 18: India's national cybersecurity agency CERT-in, has warned people of credit card skimming spreading across the world through e-commerce platforms.

Attackers are typically targeting e-commerce sites because of their wide presence, popularity and the environment LAMP (Linux, Apache, MySQL, and PHP), the Computer Emergency Response Team (CERT-In) said in a notice on Thursday.

Recently, attackers targeted sites which were hosted on Microsoft's IIS server running with the ASP.NET web application framework, it said.

Some of the sites affected by the attack were found to be running ASP.NET version 4.0.30319, which is no longer officially supported by Microsoft and may contain multiple vulnerabilities, CERT-In said.

The notice also included a list of best practices for website developers including the use of the latest version of ASP.NET web framework, IIS web server and database server.

The advisory is based on research by Malwarebytes which found that this skimming campaign likely began sometime in April this year.

Credit card skimming has become a popular activity for cybercriminals over the past few years, and the increase in online shopping during the pandemic means additional business for them, too, Malwarebytes said in a blog post, adding that attackers do not need to limit themselves to the most popular e-commerce platforms.

Researchers from global cybersecurity and anti-virus brand Kaspersky had warned in December last year that more cybercriminal groups will target online payment processing systems in 2020. 

It said that over the past couple of years, so-called JS-skimming (the method of stealing of payment card data from online stores), has gained immense popularity among attackers. 

Kaspersky researchers in their report said they are currently aware of at least 10 different actors involved in these type of attacks.

Their number will continue to grow during the next year, the report said, adding that the most dangerous attacks will be on companies that provide services such as e-commerce as-a-service, which will lead to the compromise of thousands of companies.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 6,2020

Washington D.C., Feb 6: An international team of astronomers has found an unusual monster galaxy that existed about 12 billion years ago when the universe was only 1.8 billion years old.

The team of astronomers was led by scientists at the University of California, Riverside.

Dubbed XMM-2599, the galaxy formed stars at a high rate and then died. Why it suddenly stopped forming stars is unclear.

"Even before the universe was 2 billion years old, XMM-2599 had already formed a mass of more than 300 billion suns, making it an ultra massive galaxy," said Benjamin Forrest, a postdoctoral researcher in the UC Riverside Department of Physics and Astronomy and the study's lead author.

"More remarkably, we show that XMM-2599 formed most of its stars in a huge frenzy when the universe was less than 1 billion years old and then became inactive by the time the universe was only 1.8 billion years old," Forrest added.

The team used spectroscopic observations from the W. M. Keck Observatory's powerful Multi-Object Spectrograph for Infrared Exploration or MOSFIRE, to make detailed measurements of XMM-2599 and precisely quantify its distance.

The study results appear in the Astrophysical Journal.

"In this epoch, very few galaxies have stopped forming stars, and none are as massive as XMM-2599," said Gillian Wilson, a professor of physics and astronomy at UCR in whose lab Forrest works.

"The mere existence of ultramassive galaxies like XMM-2599 proves quite a challenge to numerical models. Even though such massive galaxies are incredibly rare at this epoch, the models do predict them."

"The predicted galaxies, however, are expected to be actively forming stars. What makes XMM-2599 so interesting, unusual, and surprising is that it is no longer forming stars, perhaps because it stopped getting fuel or its black hole began to turn on. Our results call for changes in how models turn off star formation in early galaxies," the professor stated.

The research team found XMM-2599 formed more than 1,000 solar masses a year in stars at its peak of activity -- an extremely high rate of star formation. In contrast, the Milky Way forms about one new star a year.

"XMM-2599 may be a descendant of a population of highly star-forming dusty galaxies in the very early universe that new infrared telescopes have recently discovered," said Danilo Marchesini, an associate professor of astronomy at Tufts University and a co-author on the study.

"We have caught XMM-2599 in its inactive phase," Wilson said, who led the W. M. Keck Observatory data acquisition
Co-author Michael Cooper, a professor of astronomy at UC Irvine, said this outcome is a strong possibility.

"Perhaps during the following 11.7 billion years of cosmic history, XMM-2599 will become the central member of one of the brightest and most massive clusters of galaxies in the local universe," he said.

"Alternatively, it could continue to exist in isolation. Or we could have a scenario that lies between these two outcomes," he stated.

The study was supported by grants from the National Science Foundation and NASA.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.