Night workers find diabetes harder to control: study

April 4, 2017

Bangkok, Apr 4: People with type 2 diabetes have poorer control over their blood glucose levels when they work the night shift compared with those who work in the daytime or are unemployed, a new study has found.

nightshiftThe study shows that poor long-term glycemic, or blood sugar, control, was independent of what workers ate or any sleep problems they had.

The findings expand on previous research showing that night shift work is associated with an increased risk for the development of diabetes.

"Previously, there were little data whether people who already have type 2 diabetes and work the night shift have trouble controlling their blood sugars," said Sirimon Reutrakul, associate professor at Mahidol University in Thailand.

"Our study data raise awareness of the difficulty in diabetes control among night shift workers," said Reutrakul.

Reutrakul and her colleagues studied 260 individuals with type 2 diabetes in Thailand: 62 night shift workers, 94 daytime workers and 104 unemployed individuals.

They determined the study participants' glycemic control by reviewing their medical records for recent measurements of hemoglobin A1C.

The A1C test shows the average blood sugar level over the previous three months. Most people with diabetes should strive for an A1C level below 7 per cent, according to the Hormone Health Network.

Night shift workers reportedly had an average A1C of 8.2 per cent, significantly higher than the 7.6 per cent A1C for daytime workers and 7.5 per cent A1C for participants who did not work.

On questionnaires, night shift workers also reported shorter sleep duration, higher daily intake of calories and higher body mass index, or BMI (an estimate of body fat), than did the other two groups.

Even after the researchers adjusted their statistical analyses for factors that could affect glucose metabolism, including sleep duration, dietary intake and BMI, the significant association between shift work and glycemic control remained, Reutrakul said.

"Diabetic individuals who work at night should pay special attention to managing their disease through healthy eating, regular exercise and optimal use of medications prescribed by their physician," Reutrakul added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
May 19,2020

New York, May 19: Cigarette smoke spurs the lungs to make more of the receptor protein which the novel coronavirus uses to enter human cells, according to a study which suggests that quitting smoking might reduce the risk of a severe coronavirus infection.

The findings, published in the journal Developmental Cell, may explain why smokers appear to be particularly vulnerable to severe COVID-19 disease.

"Our results provide a clue as to why smokers who develop COVID-19 tend to have poor clinical outcomes," said study senior author Jason Sheltzer, a cancer geneticist at Cold Spring Harbor Laboratory in the US.

"We found that smoking caused a significant increase in the expression of ACE2, the protein that SARS-CoV-2 uses to enter human cells," Sheltzer said.

According to the scientists, quitting smoking might reduce the risk of a severe coronavirus infection.

They said most individuals infected with the virus suffer only mild illness, if they experience any at all.

However, some require intensive care when the sometimes-fatal virus attacks, the researchers said.

In particular, they said three groups have been significantly more likely than others to develop severe illness -- men, the elderly, and smokers.

Turning to previously published data for possible explanations for these disparities, the scientists assessed if vulnerable groups share some key features related to the human proteins that the coronavirus relies on for infection.

First, they said, they focused on comparing gene activity in the lungs across different ages, between the sexes, and between smokers and nonsmokers.

The scientists said both mice that had been exposed to smoke in a laboratory, and humans who were current smokers had significant upregulation of ACE2.

According to Sheltzer, smokers produced 30-55 per cent more ACE2 than their non-smoking counterparts.

While the researchers found no evidence that age or sex impacts ACE2 levels in the lungs, they said the influence of smoke exposure was surprisingly strong.

However, they said, the change seemed to be temporary.

According to the data, the level of the receptors ACE2 in the lungs of people who had quit smoking was similar to that of non-smokers.

The study noted that the most prolific producers of ACE2 in the airways are mucus-producing cells called goblet cells.

Smoking is known to increase the prevalence of such cells, the scientists said.

"Goblet cells produce mucous to protect the respiratory tract from inhaled irritants. Thus, the increased expression of ACE2 in smokers' lungs could be a byproduct of smoking-induced secretory cell hyperplasia," Sheltzer explained.

However, Sheltzer said other studies on the effects of cigarette smoke have shown mixed results.

"Cigarette smoke contains hundreds of different chemicals. It's possible that certain ingredients like nicotine have a different effect than whole smoke does," he said.

The researchers cautioned that the actual ACE2 protein may be regulated in ways not addressed in the current study.

"One could imagine that having more cells that express ACE2 could make it easier for SARS-CoV-2 to spread in someone's lungs, but there is still a lot more we need to explore," Sheltzer said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 11,2020

Using smartphone for long hours every day may do you more harm than you can probably think of. Researchers have found that spending a lot of time with the device and on social media may lead to mental distress and suicidality among adolescents.

The findings, published in the journal CMAJ (Canadian Medical Association Journal) contains guidance for physicians, parents and teachers on how to help teenagers manage smartphone and social media use for a healthy balance between sleep, academic work, social activity, interpersonal relationships and online activity.

"Physicians, teachers and families need to work together with youth to decrease possible harmful effects of smartphones and social media on their relationships, sense of self, sleep, academic performance, and emotional well-being," said lead author of the study Elia Abi-Jaoude from Toronto Western Hospital in Canada.

This review of evidence, led by the Hospital for Sick Children (SickKids), focuses on smartphone use and does not consider online gaming.

"For adolescents today, who have not known a world without social media, digital interactions are the norm, and the potential benefits of online access to productive mental health information -- including media literacy, creativity, self-expression, sense of belonging and civic engagement -- as well as low barriers to resources such as crisis lines and Internet-based talking therapies cannot be discounted," the authors wrote.

The researchers recommend that doctors should ask teenagers to reduce social media use rather than eradicate it completely and encourage parents to be part of the conversations.

Parents should discuss appropriate smartphone use with teenagers to determine together how to reduce risks and set boundaries.

A recent poll from the US indicates that 54 per cent of teenagers think they spend too much time on their smartphones and about half said they were cutting back on usage.

"Encouragingly, youth are increasingly recognising the negative impact of social media on their lives and starting to take steps to mitigate it," the authors wrote.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 21,2020

Washington, Feb 21: The fat around arteries may play an important role in keeping the blood vessels healthy, according to a study in rats that may affect how researchers test for treatments related to plaque buildup, as seen in conditions leading to heart attack.

The study, published in the journal Scientific Reports, noted that the fat, known as perivascular adipose tissue, or PVAT, helps arteries let go of muscular tension while under constant strain.

According to the researchers, including Stephanie W. Watts from the Michigan State University in the US, this feature is similar to how the bladder expands to accommodate more liquid, while at the same time keeping it from spilling out.

"In our study, PVAT reduced the tension that blood vessels experience when stretched," Watts said.

"And that's a good thing, because the vessel then expends less energy. It's not under as much stress," she added.

According to Watts and her team, PVAT has largely been ignored by researchers believing its main job was to store lipids and do little more.

Until now, she said, scientists only divided blood vessels into three parts, the innermost layer called the tunica intima, the middle layer called the tunica media, and the outermost layer called the tunica adventitia.

Watts believes PVAT is the fourth layer, which others have called tunica adiposa.

Tunica, she said, meant a membranous sheath enveloping or lining an organ, and adiposa is a synonym for fat.

"For years, we ignored this layer -- in the lab it was thrown out. In the clinic it wasn't imaged. But now we're discovering it may be integral to our blood vessels," Watts said.

"Our finding redefines what the functional blood vessels are, and is part of what can be dysfunctional in diseases that afflict us, including hypertension. We need to pay attention to this layer of a blood vessel because it does far more than we originally thought," she added.

Earlier studies, Watts said, had shown that PVAT plays a role in the functioning of blood vessels, finding that it secretes substances that can cause blood vessels to relax as well as substances that can cause it to contract.

In the current study, the researchers decided to test whether PVAT provides a structural benefit to arteries by assisting the function of stress relaxation.

They tested the thoracic aorta in rats, and found those with intact PVAT had more stress relaxation than those without.

The study revealed that the pieces of artery with surrounding fat had measurably relaxed more than those without.

Watts and her colleagues then tested other arteries, and were able to duplicate the same response.

"It's not something you see only in this particular vessel or this particular species or this particular strain. But that maybe it's a general phenomenon," she said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.