Red meat may put you at risk of developing cancer, even supermarkets not safe

Agencies
December 26, 2017

Dec 26: Before buying red meat from market, you may want take a complete look at the entire animal, as a study recently warns that consuming processed meat may increase the risk of developing cancer.

Cancer Research UK has acknowledged a correlation between processed and red meats and the deadly disease.

According to experts, the only way to be certain that it hasn’t been affected by tumours is by taking a look at the entire animal before it’s cut up because consuming diseased product may increase your risk of developing cancer, reports easily star online.

Author Tim Key from the University of Oxford said, “Cancer Research UK supports IARC’s decision that there’s strong enough evidence to classify processed meat as a cause of cancer and red meat as a probable cause of cancer.”

“We’ve known for some time about the probable link between red and processed meat and bowel cancer, which is backed by substantial evidence.

They warned that even if you are buying it from a supermarket, then also there is no certainty that cancer has been chopped out by butchers. Cancer Research UK and the International Agency for Research on Cancer classify processed meats, including bacon and sausages, as “causes of cancer”. The team advises public to reduce their meat intake if it’s excessive.

“This decision doesn’t mean you need to stop eating any red and processed meat. But if you eat lots of it you may want to think about cutting down,” the researchers concluded.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
April 15,2020

Dear parents, if you want your children to have proper sleep, read this carefully. Joining a growing list of studies that tell parents to shun devices at bed-time, researchers say that children who use devices and decide what time they go to sleep, achieve less sleep and feel more sleepier the following day than their peers.

The study of children in this age-group (aged 11 to 13 years), published in the New Zealand Medical Journal, found most (72 per cent) of the 163 students interviewed by University of Otago researchers achieved recommended guidelines of an average 9 to 11 hours sleep nightly over one week.

"But that also means that almost one in four students did not achieve sleep within these guidelines, which highlights an area for improvement," said study researcher Kate Ford.

However, consistent with previous research in 15 to 17-year-old New Zealanders, the study results show less sleep on the nights where devices are used in the hour before bed.

According to the researchers, students who used devices before going to sleep were also more likely to report that they felt sleepy the following morning. Watching television before bed had no significant effect on sleep length.

There were also some interesting observations over the weekends where students went to bed later but woke later achieving similar sleep length to the school days, the researchers said.

A small group of students (six per cent) who reported less than seven hours of sleep, including a small number reporting not sleeping at all, according to the study,

Therefore, while the average across the week of 72 per cent of students reporting adequate sleep is reassuring, it is far from the goal of every child achieving sleep within the recommended guidelines," Ford said.

Dr Paul Kelly, head of the Sleep Health Service at Canterbury District Health Board, supervised the study and explained that the foundations for good health are based on proper nutrition, regular exercise and good sleep quality.

Sleep quality is often overlooked as a contributory factor to poor health.

"The study findings suggest the need for parental guidance around bedtimings and moderation of the use and availability of electronic devices before bed," Kelly said.

"Respect and protect your sleep, as good daytime functioning is reliant on adequate sleep," Kelly added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 21,2020

Washington, Feb 21: The fat around arteries may play an important role in keeping the blood vessels healthy, according to a study in rats that may affect how researchers test for treatments related to plaque buildup, as seen in conditions leading to heart attack.

The study, published in the journal Scientific Reports, noted that the fat, known as perivascular adipose tissue, or PVAT, helps arteries let go of muscular tension while under constant strain.

According to the researchers, including Stephanie W. Watts from the Michigan State University in the US, this feature is similar to how the bladder expands to accommodate more liquid, while at the same time keeping it from spilling out.

"In our study, PVAT reduced the tension that blood vessels experience when stretched," Watts said.

"And that's a good thing, because the vessel then expends less energy. It's not under as much stress," she added.

According to Watts and her team, PVAT has largely been ignored by researchers believing its main job was to store lipids and do little more.

Until now, she said, scientists only divided blood vessels into three parts, the innermost layer called the tunica intima, the middle layer called the tunica media, and the outermost layer called the tunica adventitia.

Watts believes PVAT is the fourth layer, which others have called tunica adiposa.

Tunica, she said, meant a membranous sheath enveloping or lining an organ, and adiposa is a synonym for fat.

"For years, we ignored this layer -- in the lab it was thrown out. In the clinic it wasn't imaged. But now we're discovering it may be integral to our blood vessels," Watts said.

"Our finding redefines what the functional blood vessels are, and is part of what can be dysfunctional in diseases that afflict us, including hypertension. We need to pay attention to this layer of a blood vessel because it does far more than we originally thought," she added.

Earlier studies, Watts said, had shown that PVAT plays a role in the functioning of blood vessels, finding that it secretes substances that can cause blood vessels to relax as well as substances that can cause it to contract.

In the current study, the researchers decided to test whether PVAT provides a structural benefit to arteries by assisting the function of stress relaxation.

They tested the thoracic aorta in rats, and found those with intact PVAT had more stress relaxation than those without.

The study revealed that the pieces of artery with surrounding fat had measurably relaxed more than those without.

Watts and her colleagues then tested other arteries, and were able to duplicate the same response.

"It's not something you see only in this particular vessel or this particular species or this particular strain. But that maybe it's a general phenomenon," she said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 26,2020

High-protein diets may help people lose weight and build muscle, but there is a downside to it --a greater heart attack risk. Researchers now report that high-protein diets boost artery-clogging plaque.

The research in mice showed that high-protein diets spur unstable plaque -- the kind most prone to rupturing and causing blocked arteries.

More plaque buildup in the arteries, particularly if it's unstable, increases the risk of heart attack.

"There are clear weight-loss benefits to high-protein diets, which has boosted their popularity in recent years," said senior author Babak Razani, associate professor at Washington University School of Medicine in St. Louis, Missouri.

"But animal studies and some large epidemiological studies in people have linked high dietary protein to cardiovascular problems. We decided to take a look at whether there is truly a causal link between high dietary protein and poorer cardiovascular health," Razani added.

The researchers studied mice who were fed a high-fat diet to deliberately induce atherosclerosis, or plaque buildup in the arteries.

Some of the mice received a high-fat diet that was also high in protein. And others were fed a high-fat, low-protein diet for comparison.

The mice on the high-fat, high-protein diet developed worse atherosclerosis -- about 30 per cent more plaque in the arteries -- than mice on the high-fat, normal-protein diet, despite the fact that the mice eating more protein did not gain weight, unlike the mice on the high-fat, normal-protein diet.

"A couple of a scoop of protein powder in a milkshake or smoothie adds something like 40 grams of protein -- almost equivalent to the daily recommended intake," Razani said.

"To see if protein has an effect on cardiovascular health, we tripled the amount of protein that the mice receive in the high-fat, high-protein diet -- keeping the fat constant. Protein went from 15 per cent to 46 per cent of calories for these mice".

Plaque contains a mix of fat, cholesterol, calcium deposits and dead cells. Past work by Razani's team and other groups has shown that immune cells called macrophages work to clean up plaque in the arteries.

But the environment inside plaque can overwhelm these cells, and when such cells die, they make the problem worse, contributing to plaque buildup and increasing plaque complexity.

"In mice on the high-protein diet, their plaques were a macrophage graveyard," Razani informed.

To understand how high dietary protein might increase plaque complexity, Razani and his colleagues also studied the path protein takes after it has been digested -- broken down into its original building blocks, called amino acids.

"This study is not the first to show a telltale increase in plaque with high-protein diets, but it offers a deeper understanding of the impact of high protein with the detailed analysis of the plaques," said Razani.

"This work not only defines the critical processes underlying the cardiovascular risks of dietary protein but also lays the groundwork for targeting these pathways in treating heart disease," he added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.