Strenuous exercise does not suppress immune system

Agencies
April 23, 2018

Researchers have debunked a nearly four-decade-old myth that strenuous exercisesuppresses the immune system. A study, conducted by the Department for Health at the University of Bath, reinterprets scientific findings from the last few decades and emphasises that exercise – instead of dampening immunity – may instead be beneficial for immune health.

In a detailed analysis of research articles that have been published since the 1980s, this new review of the literature has reinterpreted findings, based on fundamental principles of immunology and exercise physiology, to clarify misconceptions and misinterpretations that have formed over the years.

In their study, the authors explain that, for competitors taking part in endurance sports, exercise causes immune cells to change in two ways. Initially, during exercise, the number of some immune cells in the bloodstream can increase dramatically by up to 10 times, especially ‘natural killer cells’ which deal with infections.

After exercise, some cells in the bloodstream decrease substantially – sometimes falling to levels lower than before exercise started, and this can last for several hours.

Many scientists previously interpreted this fall in immune cells after exercise to be immune-suppression. However strong evidence suggests that this does not mean that cells have been ‘lost’ or ‘destroyed’, but rather that they move to other sites in the body that are more likely to become infected, such as the lungs.

Scientists know that these cells are not ‘destroyed’ for three main reasons. First, most evidence shows that cells return to normal levels within several hours, which is far too quick for them be ‘replaced’ with new cells. Second, studies in humans have shown that these cells have the ability to leave the bloodstream and travel to other body sites.

Third, studies with laboratory animals have shown by labelling immune cells, that following exercise, these labelled cells accumulate in the lungs, and other places, because they go there to look for infections.

The authors, therefore, suggest that low numbers of immune cells in the bloodstream in the hours after exercise, far from being a sign of immune-suppression, are in fact a signal that these cells, primed by exercise, are working in other parts of the body.

Dr John Campbell from the University’s Department for Health explained: “It is increasingly clear that changes happening to your immune system after a strenuous bout of exercise do not leave your body immune-suppressed. In fact, evidence now suggests that your immune system is boosted after exercise – for example we know that exercise can improve your immune response to a flu jab.”

Co-author, Dr James Turner added: “Given the important role exercise has for reducing the risk of cardiovascular disease, cancer and type II diabetes, the findings from our analysis emphasise that people should not be put off exercise for fear that it will dampen their immune system. Clearly, the benefits of exercise, including endurance sports, outweigh any negative effects which people may perceive.”

The authors suggest that although a strenuous exercise bout itself will not increase the likelihood of catching an infection, other factors might.

First, attending any event where there is a large gathering of people, increases your chance of infection. Second, public transport, particularly airline travel over long distances, where sleep is disrupted, may also increase your infection risk. Other factors, like eating an inadequate diet, getting cold and wet, and psychological stress, have all been linked to a greater chance of developing infections.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 26,2020

New York, Feb 26:  A new wearable sensor that works in conjunction with artificial intelligence (AI) technology could help doctors remotely detect critical changes in heart failure patients days before a health crisis occurs, says a study.

The researchers said the system could eventually help avert up to one in three heart failure readmissions in the weeks following initial discharge from the hospital and help patients sustain a better quality of life.

"This study shows that we can accurately predict the likelihood of hospitalisation for heart failure deterioration well before doctors and patients know that something is wrong," says the study's lead author Josef Stehlik from University of Utah in the US.

"Being able to readily detect changes in the heart sufficiently early will allow physicians to initiate prompt interventions that could prevent rehospitalisation and stave off worsening heart failure," Stehlik added.

According to the researchers, even if patients survive, they have poor functional capacity, poor exercise tolerance and low quality of life after hospitalisations.

"This patch, this new diagnostic tool, could potentially help us prevent hospitalizations and decline in patient status," Stehlik said.

For the findings, published in the journal Circulation: Heart Failure, the researchers followed 100 heart failure patients, average age 68, who were diagnosed and treated at four veterans administration (VA) hospitals in Utah, Texas, California, and Florida.

After discharge, participants wore an adhesive sensor patch on their chests 24 hours a day for up to three months.

The sensor monitored continuous electrocardiogram (ECG) and motion of each subject.

This information was transmitted from the sensor via Bluetooth to a smartphone and then passed on to an analytics platform, developed by PhysIQ, on a secure server, which derived heart rate, heart rhythm, respiratory rate, walking, sleep, body posture and other normal activities.

Using artificial intelligence, the analytics established a normal baseline for each patient. When the data deviated from normal, the platform generated an indication that the patient's heart failure was getting worse.

Overall, the system accurately predicted the impending need for hospitalization more than 80 per cent of the time.

On average, this prediction occurred 10.4 days before a readmission took place (median 6.5 days), the study said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 26,2020

High-protein diets may help people lose weight and build muscle, but there is a downside to it --a greater heart attack risk. Researchers now report that high-protein diets boost artery-clogging plaque.

The research in mice showed that high-protein diets spur unstable plaque -- the kind most prone to rupturing and causing blocked arteries.

More plaque buildup in the arteries, particularly if it's unstable, increases the risk of heart attack.

"There are clear weight-loss benefits to high-protein diets, which has boosted their popularity in recent years," said senior author Babak Razani, associate professor at Washington University School of Medicine in St. Louis, Missouri.

"But animal studies and some large epidemiological studies in people have linked high dietary protein to cardiovascular problems. We decided to take a look at whether there is truly a causal link between high dietary protein and poorer cardiovascular health," Razani added.

The researchers studied mice who were fed a high-fat diet to deliberately induce atherosclerosis, or plaque buildup in the arteries.

Some of the mice received a high-fat diet that was also high in protein. And others were fed a high-fat, low-protein diet for comparison.

The mice on the high-fat, high-protein diet developed worse atherosclerosis -- about 30 per cent more plaque in the arteries -- than mice on the high-fat, normal-protein diet, despite the fact that the mice eating more protein did not gain weight, unlike the mice on the high-fat, normal-protein diet.

"A couple of a scoop of protein powder in a milkshake or smoothie adds something like 40 grams of protein -- almost equivalent to the daily recommended intake," Razani said.

"To see if protein has an effect on cardiovascular health, we tripled the amount of protein that the mice receive in the high-fat, high-protein diet -- keeping the fat constant. Protein went from 15 per cent to 46 per cent of calories for these mice".

Plaque contains a mix of fat, cholesterol, calcium deposits and dead cells. Past work by Razani's team and other groups has shown that immune cells called macrophages work to clean up plaque in the arteries.

But the environment inside plaque can overwhelm these cells, and when such cells die, they make the problem worse, contributing to plaque buildup and increasing plaque complexity.

"In mice on the high-protein diet, their plaques were a macrophage graveyard," Razani informed.

To understand how high dietary protein might increase plaque complexity, Razani and his colleagues also studied the path protein takes after it has been digested -- broken down into its original building blocks, called amino acids.

"This study is not the first to show a telltale increase in plaque with high-protein diets, but it offers a deeper understanding of the impact of high protein with the detailed analysis of the plaques," said Razani.

"This work not only defines the critical processes underlying the cardiovascular risks of dietary protein but also lays the groundwork for targeting these pathways in treating heart disease," he added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 4,2020

Boston, Feb 4: Practising yoga may increase levels of a messenger molecule involved in regulating brain activity, and completing one yoga class per week may maintain elevated levels of this chemical, according to a study which may lead to better ways of mitigating depressive symptoms.

The study, published in the Journal of Alternative and Complementary Medicine, assessed a group of 30 clinically depressed patients who were randomly divided into two groups.

According to the researchers, including those from Boston University in the US, both groups engaged in coherent breathing, and Iyengar yoga -- a form of hatha yoga, developed by B. K. S. Iyengar, emphasising on detail, precision, and alignment in the performance of yoga postures.

The only difference between the groups, the scientists said, was the number of 90 minute yoga sessions, and home sessions in which each group participated.

Over three months, they said, the high-dose group (HDG) was assigned three sessions per week, while the low-intensity group (LIG) engaged in two sessions per week.

The participants underwent magnetic resonance imaging (MRI) scans of their brain before the first and after the last yoga session, and also completed a clinical depression scale to monitor their symptoms, the study noted.

Results of the study revealed that both groups had improvement in depressive symptoms after three months.

Their MRI analysis showed that levels of the brain messenger molecule GABA were elevated after three months of yoga, as compared to the levels before starting yoga.

According to the study, this increase was found for approximately four days after the last yoga session, but the rise was no longer observed after about eight days.

"The study suggests that the associated increase in GABA levels after a yoga session are 'time-limited' similar to that of pharmacologic treatments such that completing one session of yoga per week may maintain elevated levels of GABA," explained study co-author Chris Streeter from Boston University.

Providing evidence-based data may help in getting more individuals to try yoga as a strategy for improving their health and well-being, the scientists said.

"A unique strength of this study is that pairing the yoga intervention with brain imaging provides important neurobiological insight as to the 'how' yoga may help to alleviate depression and anxiety," said study co-author Marisa Silveri from Harvard University.

In this study, we found that an important neurochemical, GABA, which is related to mood, anxiety, and sleep, is significantly increased in association with a yoga intervention," Silveri said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.