Study creates bacteria that consume carbon dioxide for growth

Agencies
November 30, 2019

Washington D.C., Nov 30: Researchers have developed bacteria called Escherichia coli, which consume carbon-di-oxide for energy instead of organic compounds.

This creation in synthetic biology highlights the incredible plasticity of bacterial metabolism and could provide the framework for future carbon-neutral bioproduction. The work appeared in the journal -- Cell.

"Our main aim was to create a convenient scientific platform that could enhance CO2 fixation, which can help address challenges related to the sustainable production of food and fuels and global warming caused by CO2 emissions," said senior author Ron Milo, at systems biologist at the Weizmann Institute of Science.

"Converting the carbon source of E. coli, the workhorse of biotechnology, from organic carbon into CO2 is a major step towards establishing such a platform," added Milo.

A grand challenge in synthetic biology has been to generate synthetic autotrophy within a model heterotrophic organism.

Despite widespread interest in renewable energy storage and more sustainable food production, past efforts to engineer industrially relevant heterotrophic model organisms to use CO2 as the sole carbon source has failed.

Previous attempts to establish autocatalytic CO2 fixation cycles in model heterotrophs always required the addition of multi-carbon organic compounds to achieve stable growth.

"From a basic scientific perspective, we wanted to see if such a major transformation in the diet of bacteria -- from dependence on sugar to the synthesis of all their biomass from CO2 -- is possible," said first author Shmuel Gleizer (@GleizerShmuel), a Weizmann Institute of Science postdoctoral fellow.

"Beyond testing the feasibility of such a transformation in the lab, we wanted to know how extreme an adaptation is needed in terms of the changes to the bacterial DNA blueprint," added Gleizer.

The researchers used metabolic rewiring and lab evolution to convert E. coli into autotrophs. The engineered strain harvests energy from formate, which can be produced electrochemically from renewable sources.

Because formate is an organic one-carbon compound that does not serve as a carbon source for E. coli growth, it does not support heterotrophic pathways.

They inactivated central enzymes involved in heterotrophic growth, rendering the bacteria more dependent on autotrophic pathways for growth.

They also grew the cells in chemostats with a limited supply of the sugar xylose -- a source of organic carbon -- to inhibit heterotrophic pathways.

The initial supply of xylose for approximately 300 days was necessary to support enough cell proliferation to kick start evolution. The chemostat also contained plenty of formates and a 10% CO2 atmosphere.

By sequencing the genome and plasmids of the evolved autotrophic cells, the researchers discovered that as few as 11 mutations were acquired through the evolutionary process in the chemostat.
One set of mutations affected genes encoding enzymes linked to the carbon fixation cycle.

The authors said that one major study limitation is that the consumption of formate by bacteria releases more CO2 than is consumed through carbon fixation.

In addition, more research is needed before it's possible to discuss the scalability of the approach for industrial use.

In future work, the researchers will aim to supply energy through renewable electricity to address the problem of CO2 release, determine whether ambient atmospheric conditions could support autotrophy, and try to narrow down the most relevant mutations for autotrophic growth.

"This feat is a powerful proof of concept that opens up a new exciting prospect of using engineered bacteria to transform products we regard as waste into fuel, food or other compounds of interest," Milo said.

"It can also serve as a platform to better understand and improve the molecular machines that are the basis of food production for humanity and thus help in the future to increase yields in agriculture," added Milo.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 26,2020

Feb 26: While too much stress can be toxic to your health, a new study suggests that despite its negative side effects, it may also lead to a surprising social benefit.

The research, published in the journal Stress & Health, found that experiencing stress made people both more likely to give and receive emotional support from another person.

This was true on the day they experienced the stressor as well as the following day.

"Our findings suggest that just because we have a bad day, that doesn't mean it has to be completely unhealthy," said study researcher David Almeida from Penn State University in the US.

"If stress can actually connect us with other people, which I think is absolutely vital to the human experience, I think that's a benefit. Stress could potentially help people deal with negative situations by driving them to be with other people," Almeida added.

For the study, the researchers interviewed 1,622 participants every night for eight nights. They asked the participants about their stressors and whether they gave or received emotional support on that day.

Stressors included arguments, stressful events at work or school, and stressful events at home.

The researchers found that on average, participants were more than twice as likely to either give or receive emotional support on days they experienced a stressor.

Additionally, they were 26 per cent more likely to give or receive support the following day.

The researchers said that while this effect, on average, was found across the participants, it differed slightly between men and women.

"Women tended to engage in more giving and receiving emotional support than men," said study researcher Hye Won Chai.

"In our study, men were also more likely to engage in emotional support on days they were stressed, but to a lesser extent than women," Chai added.

The researchers said they were surprised that stress was linked to people not just receiving emotional support, but giving it, as well.

"We saw that someone experiencing a stressor today actually predicted them giving emotional support the next day," Almeida said.

"This made me think that it's actually possible that stress helps to drive you to other people and allows it to be ok to talk about problems -- your problems, my problems," Almeida added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
May 11,2020

Panaji, May 11: Amid the COVID-19 outbreak, most of the people are more concerned about the health of their near and dear ones than their own well-being, says a study conducted by a leading business school in Goa.

People are now more conscious about any bodily changes, and even mild cold, cough and sneezing, it says.

The study, on public's reaction towards COVID-19 outbreak by gauging their psychological response in terms of anxiety and their coping behaviour, was conducted by the Goa Institute of Management's Dr Divya Singhal and Prof Padhmanabhan Vijayaraghavan.

It took into account inputs from 231 respondents residing in various parts of the country.

"Nearly 82.25 per cent of the respondents were more worried about the health of their loved ones than their own well-being," Singhal said.

"Majority of the respondents have become conscious of any bodily changes, sensations, a mild cold, cough, sneezing and experience concern, and attribute those changes to the symptoms of COVID-19," she said.

Besides, more than 50 per cent of the respondents said their social media usage has gone up as well as their time spent on watching movies and shows through online medium, the official said.

The respondents agreed that their technology usage to connect with friends and relatives has gone up, she said.

The study also indicated that a large group of respondents found it "depressing" to read forwarded messages on the deadly disease.

"An overwhelming majority of the respondentsagreed that they discourage unverified forwarded messages about COVID-19 on social media," says the study.

It also found that 41 per centof the respondents were not doing any physical activity, like yoga, during the lockown period, while another 19 per cent were not sure about engaging themselves in physical activities.

Besides, 57 per cent of the respondents were not engaged in any mind-calming practices like meditation, and 18 per cent were not sure about taking up meditative practices, the study said.

The respondents included 145 men and 86 women, aged 18 and above, with nearly 60 per cent of them residing in non- metro cities and rest from metros.

About 47.62 per cent of the respondents were employed in private or government sectors, and the remaining included students, retired persons and homemakers.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
May 14,2020

COVID-19 mostly kills through an overreaction of the immune system, whose function is precisely to fight infections, say scientists who have decoded the mechanisms, symptoms, and diagnosis of the disease caused by the SARS-Cov-2 coronavirus.

In a study published in the journal Frontiers in Public Health, the researchers explained step-by-step how the virus infects the airways, multiplies inside cells, and in severe cases causes the immune defences to overshoot with a "cytokine storm".

This storm is an over-activation of white blood cells, which release too-great amounts of cytokines -- inflammation-stimulating molecules --into the blood, they said.

"Similar to what happens after infection with SARS and MERS, data show that patients with severe COVID-19 may have a cytokine storm syndrome," said study author Daishun Liu, Professor at Zunyi Medical University in China.

"The rapidly increased cytokines attract an excess of immune cells such as lymphocytes and neutrophils, resulting in an infiltration of these cells into lung tissue and thus cause lung injury," Liu said.

The researchers explained that the cytokine storm ultimately causes high fever, excessive leakiness of blood vessels, and blood clotting inside the body.

It also causes extremely low blood pressure, lack of oxygen and excess acidity of the blood, and build-up of fluids in the lungs, they said.

The researchers noted that white blood cells are misdirected to attack and inflame even healthy tissue, leading to failure of the lungs, heart, liver, intestines, kidneys, and genitals.

This multiple organ dysfunction syndrome (MODS) may worsen and shutdown the lungs, a condition called acute respiratory distress syndrome, (ARDS), they said.

This, the researchers explained, happens due to the formation of a so-called hyaline membrane -- composed of debris of proteins and dead cells -- lining the lungs, which makes absorption of oxygen difficult.

Most deaths due to COVID-19 are therefore due to respiratory failure, they said.

The researchers explained that in the absence of a specific antiviral cure for COVID-19, the goal of treatment must be to the fight the symptoms, and lowering the mortality rate through intensive maintenance of organ function.

For example, an artificial liver blood purification system or renal replacement therapy can be used to filter the blood through mechanical means, they said.

The team noted that especially important are methods to supplement or replace lung function, for example with non-invasive mechanical ventilation through a mask, ventilation through a tube into the windpipe, the administration of heated and humidified oxygen via a tube in the nose, or a heart-lung bypass.

The researchers stressed the importance of preventing secondary infections.

They noted that SARS-Cov-2 also invades the intestines, where it causes inflammation and leakiness of the gut lining, allowing the opportunistic entry of other disease-causing microorganisms.

The researchers advocate that this should be prevented with nutritional support, for example with probiotics -- beneficial bacteria that protect against the establishment of harmful ones -- and nutrients and amino acids to improve the immune defences and function of the intestine.

"Because treatment for now relies on aggressive treatment of symptoms, preventative protection against secondary infections, such as bacteria and fungi, is particularly important to support organ function, especially in the heart, kidneys, and liver, to try and avoid further deterioration of their condition," Liu added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.