Suffering from Sinus Problem? Air Pollution Could Be a Trigger

April 20, 2017

Apr 20: We live in a polluted world, there's no denying that fact. And with every passing year, the levels of pollution only seem to be getting worse. As such, one of the obvious consequences is the rise in chronic health problems among the people.

headacheRespiratory diseases top the rank with ailments like bronchitis, asthma, allergies, and now, even sinus. According to a new study done by Johns Hopkins University School of Medicine, people living in places like New Delhi or Beijing may be at greater risk of developing chronic sinus problems due to high levels of air pollution in these cities.

Researchers have long known that smog, ash and other particulates from industrial smokestacks and other sources that pollute air quality exacerbate and raise rates of asthma symptoms, but had little evidence of similar damage from those pollutants to the upper respiratory system. In the study, published in the American Journal of Respiratory Cell and Molecular Biology, the researchers found evidence that breathing in dirty air directly causes a breakdown in the integrity of the sinus and nasal air passages in mice.

"In the US, regulations have kept a lot of air pollution in check, but in places like New Delhi, Cairo or Beijing, where people heat their houses with wood-burning stoves, and factories release pollutants into the air, our study suggests people are at higher risk of developing chronic sinus problems," said Murray Ramanathan, Associate Professor at the University.

About the Study

To see how pollution may directly affect the biology of the upper airways, the researchers exposed mice to either filtered air or polluted air. The aerosolised particles, although concentrated, were 30 to 60 percent lower than the average concentrations of particles of a similar size in cities like New Delhi, Cairo and Beijing, the researchers said.

Nineteen mice breathed in filtered air, and 19 breathed polluted air for six hours per day, five days a week for 16 weeks. The researchers used water to flush out the noses and sinuses of the mice, and then looked at the inflammatory and other cells in the flushed-out fluid under a microscope.

They saw many more white blood cells that signal inflammation, including macrophages, neutrophils and eosinophils, in the mice that breathed in the polluted air compared with those that breathed in filtered air.

When the researchers examined layers of cells along the nasal passages and sinuses under a microscope, they found that the surface layer - or epithelium - was, notably, 30 to 40 per cent thicker in mice that breathed in polluted air than in those that breathed filtered air. A thicker epithelium is another sign of inflammation in humans and other animals, Ramanathan said.

"We've identified a lot of evidence that breathing in dirty air directly causes a breakdown in the integrity of the sinus and nasal air passages in mice," said Ramanathan. "Keeping this barrier intact is essential for protecting the cells in the tissues from irritation or infection from other sources, including pollen or germs," he explained.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 2,2020

The American pharmaceutical giant Pfizer Inc. and the European biotechnology company BioNTech SE have conducted an experimental trial of a COVID-19 vaccine candidate and found it to be safe, well-tolerated, and capable of generating antibodies in the patients.

The study, which is yet to be peer-reviewed, describes the preliminary clinical data for the candidate vaccine -- nucleoside-modified messenger RNA (modRNA), BNT162b1.

It said the amount of antibodies produced in participants after they received two shots of the vaccine candidate was greater than that reported in patients receiving convalescent plasma from recovered COVID-19 patients.

"I was glad to see Pfizer put up their phase 1 trial data today. Virus neutralizing antibody titers achieved after two doses are greater than convalescent antibody titers," tweeted Peter Hotez, a vaccine scientist from Baylor College of Medicine in the US, who was unrelated to the study.

Researchers, including those from New York University in the US, who were involved in the study, said the candidate vaccine enables human cells to produce an optimised version of the receptor binding domain (RBD) antigen -- a part of the spike (S) protein of SARS-CoV-2 which it uses to gain entry into human cells.

"Robust immunogenicity was observed after vaccination with BNT162b1," the scientists noted in the study.

They said the program is evaluating at least four experimental vaccines, each of which represents a unique combination of mRNA format and target component of the novel coronavirus, SARS-CoV-2.

Based on the study's findings, they said BNT162b1 could be administered in a quantity that was well tolerated, potentially generating a dose dependent production of immune system molecules in the patients.

The research noted that patients treated with the vaccine candidate produced nearly 1.8 to 2.8 fold greater levels of RBD-binding antibodies that could neutralise SARS-CoV-2.

"We are encouraged by the clinical data of BNT162b1, one of four mRNA constructs we are evaluating clinically, and for which we have positive, preliminary, topline findings," said Kathrin U. Jansen, study co-author and Senior Vice President and Head of Vaccine Research & Development, Pfizer.

"We look forward to publishing our clinical data in a peer-reviewed journal as quickly as possible," Jansen said.

According to Ugur Sahin, CEO and Co-founder of BioNTech, and another co-author of the study, the preliminary data are encouraging as they provide an initial signal that BNT162b1 is able to produce neutralising antibody responses in humans.

He said the immune response observed in the patients treated with the experimental vaccine are at, or above, the levels observed from convalescent sera, adding that it does so at "relatively low dose levels."

"We look forward to providing further data updates on BNT162b1," Sahin said.

According to a statement from Pfizer, the initial part of the study included 45 healthy adults 18 to 55 years of age.

It said the priliminary data for BNT162b1 was evaluated in 24 subjects who received two injections of 10 microgrammes ( g) and 30 g -- 12 subjects who received a single injection of 100 g, and 9 subjects who received two doses of a dummy vaccine.

The study noted that participants received two doses, 21 days apart, of placebo, 10 g or 30 g of BNT162b1, or received a single dose of 100 g of the vaccine candidate.

According to the scientists, the highest neutralising concentrations of antibodies were observed seven days after the second dose of 10 g, or 30 g on day 28 after vaccination.

They said the neutralising concentrations were 1.8- and 2.8-times that observed in a panel of 38 blood samples from people who had contracted the virus.

In all 24 subjects who received two vaccinations at 10 g and 30 g dose levels, elevation of RBD-binding antibody concentrations was observed after the second injection, the study noted.

It said these concentrations are 8- and 46.3-times the concentration seen in a panel of 38 blood samples from those infected with the novel coronavirus.

At the 10 g or 30 g dose levels, the scientists said adverse reactions, including low grade fever, were more common after the second dose than the first dose.

According to Pfizer, local reactions and systemic events after injection with 10 g and 30 g of BNT162b1 were "dose-dependent, generally mild to moderate, and transient."

It said the most commonly reported local reaction was injection site pain, which was mild to moderate, except in one of 12 subjects who received a 100 g dose, which was severe.

The study noted that there was no serious adverse events reported by the patients.

Citing the limitations of the research, the scientists said the immunity generated in the participants in the form of the T cells and B cells of their immune system, and the level of immunity needed to protect one from COVID-19 are unknown.

With these preliminary data, along with additional data being generated, Pfizer noted in the statement that the two companies will determine a dose level, and select among multiple vaccine candidates to seek to progress to a large, global safety and efficacy trial, which may involve up to 30,000 healthy participants if regulatory approval to proceed is received.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 20,2020

The World Health Organisation has warned that the COVID-19 pandemic is entering a "new and dangerous" phase. Thursday saw the most cases in a single day reported to the WHO.

Tedros Adhanom Ghebreyesus said the day had seen 150,000 new cases with half of those coming from the Americas and large numbers also from the Middle East and South Asia, the BBC reported.

He said the virus was still spreading fast and the pandemic accelerating.

He acknowledged people might be fed up with self-isolating and countries were eager to open their economies but he said that now was a time for extreme vigilance.

Maria van Kerkhove, technical lead of the WHO's COVID-19 response, told a press conference the pandemic is "accelerating in many parts of the world".

"While we have seen countries have some success in suppressing transmission and bringing transition down to a low level, every country must remain ready," she said.

Mike Ryan, the head of the WHO's Health Emergencies Programme, said that some countries had managed to flatten the peak of infections without bringing them down to a very low level.

"You can see a situation in some countries where they could get a second peak now, because the disease has not been brought under control," he said.

"The disease will then go away and reduce to a low level, and they could then get a second wave again in the autumn or later in the year."

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 26,2020

New York, Feb 26:  A new wearable sensor that works in conjunction with artificial intelligence (AI) technology could help doctors remotely detect critical changes in heart failure patients days before a health crisis occurs, says a study.

The researchers said the system could eventually help avert up to one in three heart failure readmissions in the weeks following initial discharge from the hospital and help patients sustain a better quality of life.

"This study shows that we can accurately predict the likelihood of hospitalisation for heart failure deterioration well before doctors and patients know that something is wrong," says the study's lead author Josef Stehlik from University of Utah in the US.

"Being able to readily detect changes in the heart sufficiently early will allow physicians to initiate prompt interventions that could prevent rehospitalisation and stave off worsening heart failure," Stehlik added.

According to the researchers, even if patients survive, they have poor functional capacity, poor exercise tolerance and low quality of life after hospitalisations.

"This patch, this new diagnostic tool, could potentially help us prevent hospitalizations and decline in patient status," Stehlik said.

For the findings, published in the journal Circulation: Heart Failure, the researchers followed 100 heart failure patients, average age 68, who were diagnosed and treated at four veterans administration (VA) hospitals in Utah, Texas, California, and Florida.

After discharge, participants wore an adhesive sensor patch on their chests 24 hours a day for up to three months.

The sensor monitored continuous electrocardiogram (ECG) and motion of each subject.

This information was transmitted from the sensor via Bluetooth to a smartphone and then passed on to an analytics platform, developed by PhysIQ, on a secure server, which derived heart rate, heart rhythm, respiratory rate, walking, sleep, body posture and other normal activities.

Using artificial intelligence, the analytics established a normal baseline for each patient. When the data deviated from normal, the platform generated an indication that the patient's heart failure was getting worse.

Overall, the system accurately predicted the impending need for hospitalization more than 80 per cent of the time.

On average, this prediction occurred 10.4 days before a readmission took place (median 6.5 days), the study said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.