Weight loss linked to healthy eating not genetics

Agencies
February 25, 2018

Washington, Feb 25: The amount and quality of food and not a persons genetics will lead to weight loss, a US study has found.

It has been suggested that variations in genetic makeup make it easier for some people to lose weight than others on certain diets.

To test this theory researchers at Stanford University conducted a randomised control trial involving 609 overweight adults, who all underwent genetic and insulin testing before being randomly assigned to either a low-fat or low-carb diet for 12 months.

Gene analyses identified variations linked with how the body processes fats or carbohydrates. But weight loss averaged around 5kg to 6kg at follow-up regardless of genes, insulin levels or diet type.

What seemed to make a difference was healthy eating, researchers said.

Participants who ate the most vegetables and consumed the fewest processed foods, sugary drinks and unhealthy fats lost the most weight.

Participants had 22 health education classes during the study and were encouraged to be physically active but the focus was on what they ate.

They were advised to choose high-quality foods but were not given suggested calorie limits nor were they provided with specific foods. Results are based on what they reported eating.

Fat intake in the low-fat group averaged 57 grams during the study versus 87 grams beforehand, while carb intake in the low-carb group averaged 132 grams versus 247 grams previously.

Both groups reduced their daily calorie intake by an average of about 500 calories.

Comments

Katie Grace
 - 
Thursday, 8 Mar 2018

Instead of going on a diet it would be better to find new, healthier habits

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 25,2020

Washington D.C., Jan 25: A new study conducted by a team of researchers reveals why individuals who have a history of early life adversity (ELA) are disproportionately prone to opioid addiction.

The study conducted examined how early adversities interact with factors such as increased access to opioids to directly influence brain development and function, causing a higher potential for opioid addiction.

The study was lead by UCI researchers and was published in Molecular Psychiatry.

Tallie Z. Baram, MD, PhD, the Danette Shepard Chair in Neurological Sciences at the UCI School of Medicine and one of the senior researchers for the study, was on the take that the widely known factor genetics that plays major role in addiction vulnerability, cannot be solely held responsible for the recent rise in opioid abuse.

To further clarify, the researchers simulated ELA in rats by limiting bedding and nesting materials during a short, postnatal period of time.

In female rats, this led to striking opioid addiction-like characteristics including an increased relapse- behaviour, for example.

As observed in addicted humans, the rats were willing to work very hard (pay a very high price) to obtain the drug.

Baram said: "Ultimately, we found that conditions during sensitive developmental periods can lead to vulnerability to the addictive effects of opioid drugs, especially in females, which is consistent with the prevalence of ELA in heroin-addicted women."

These findings can be used to highlight the importance given to sex differences in future ELA-related studies on opioid addiction, and in future prevention or intervention strategies being developed to address the growing opioid crisis.

The study conducted examined how early adversities interact with factors such as increased access to opioids to directly influence brain development and function, causing a higher potential for opioid addiction.

The study was lead by UCI researchers and was published in Molecular Psychiatry.

The study found that unpredictable, fragmented early life environments may lead to abnormal maturation of certain brain circuits, which profoundly impacts brain function and persists into adolescence and adulthood.

Tallie Z. Baram, MD, PhD, the Danette Shepard Chair in Neurological Sciences at the UCI School of Medicine and one of the senior researchers for the study, was on the take that the widely known factor genetics that plays major role in addiction vulnerability, cannot be solely held responsible for the recent rise in opioid abuse.

To further clarify, the researchers implanted ELA in rats by limiting bedding and nesting materials during a short, postnatal period of time.

In female rats, this led to striking opioid addiction-like characteristics including an increased relapse- behaviour, for example.

As observed in addicted humans, the rats were willing to work very hard (pay a very high price) to obtain the drug.

Baram said: "Ultimately, we found that conditions during sensitive developmental periods can lead to vulnerability to the addictive effects of opioid drugs, especially in females, which is consistent with the prevalence of ELA in heroin-addicted women."

These findings can be used to highlight the importance given to sex differences in future ELA-related studies on opioid addiction, and in future prevention or intervention strategies being developed to address the growing opioid crisis.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 7,2020

The World Health Organization (WHO) is reviewing a report that suggested its advice on the novel coronavirus needs updating after some scientists told the New York Times there was evidence the virus could be spread by tiny particles in the air.

The WHO says the Covid-19 disease spreads primarily through small droplets, which are expelled from the nose and mouth when an infected person breaths them out in coughs, sneezes, speech or laughter and quickly sink to the ground.

In an open letter to the Geneva-based agency, 239 scientists in 32 countries outlined the evidence they say shows that smaller exhaled particles can infect people who inhale them, the newspaper said on Saturday.

Because those smaller particles can linger in the air longer, the scientists - who plan to publish their findings in a scientific journal this week - are urging WHO to update its guidance, the Times said.

"We are aware of the article and are reviewing its contents with our technical experts," WHO spokesman Tarik Jasarevic said in an email reply on Monday to a Reuters request for comment.

The extent to which the coronavirus can be spread by the so-called airborne or aerosol route - as opposed to by larger droplets in coughs and sneezes - remains disputed.

Any change in the WHO's assessment of the risk of transmission could affect its current advice on keeping one-metre physical distancing. Governments, which also rely on the agency for guidance policy, may also have to adjust public health measures aimed at curbing the spread of the virus.

"Especially in the last couple of months, we have been stating several times that we consider airborne transmission as possible but certainly not supported by solid or even clear evidence," Benedetta Allegranzi, the WHO's technical lead for infection prevention and control, was quoted as saying in the New York Times.

WHO guidance to health workers, dated June 29, says that SARS-CoV-2, the virus that causes Covid-19, is primarily transmitted between people through respiratory droplets and on surfaces.

But airborne transmission via smaller particles is possible in some circumstances, such as when performing intubation and aerosol-generating procedures, it says.

Medical workers performing such procedures should wear heavy-duty N95 respiratory masks and other protective equipment in an adequately ventilated room, the WHO says.

Officials at South Korea's Centers for Disease Control said on Monday they were continuing to discuss various issues about Covid-19, including the possible airborne transmission. They said more investigations and evidence were needed.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
February 21,2020

Washington, Feb 21: The fat around arteries may play an important role in keeping the blood vessels healthy, according to a study in rats that may affect how researchers test for treatments related to plaque buildup, as seen in conditions leading to heart attack.

The study, published in the journal Scientific Reports, noted that the fat, known as perivascular adipose tissue, or PVAT, helps arteries let go of muscular tension while under constant strain.

According to the researchers, including Stephanie W. Watts from the Michigan State University in the US, this feature is similar to how the bladder expands to accommodate more liquid, while at the same time keeping it from spilling out.

"In our study, PVAT reduced the tension that blood vessels experience when stretched," Watts said.

"And that's a good thing, because the vessel then expends less energy. It's not under as much stress," she added.

According to Watts and her team, PVAT has largely been ignored by researchers believing its main job was to store lipids and do little more.

Until now, she said, scientists only divided blood vessels into three parts, the innermost layer called the tunica intima, the middle layer called the tunica media, and the outermost layer called the tunica adventitia.

Watts believes PVAT is the fourth layer, which others have called tunica adiposa.

Tunica, she said, meant a membranous sheath enveloping or lining an organ, and adiposa is a synonym for fat.

"For years, we ignored this layer -- in the lab it was thrown out. In the clinic it wasn't imaged. But now we're discovering it may be integral to our blood vessels," Watts said.

"Our finding redefines what the functional blood vessels are, and is part of what can be dysfunctional in diseases that afflict us, including hypertension. We need to pay attention to this layer of a blood vessel because it does far more than we originally thought," she added.

Earlier studies, Watts said, had shown that PVAT plays a role in the functioning of blood vessels, finding that it secretes substances that can cause blood vessels to relax as well as substances that can cause it to contract.

In the current study, the researchers decided to test whether PVAT provides a structural benefit to arteries by assisting the function of stress relaxation.

They tested the thoracic aorta in rats, and found those with intact PVAT had more stress relaxation than those without.

The study revealed that the pieces of artery with surrounding fat had measurably relaxed more than those without.

Watts and her colleagues then tested other arteries, and were able to duplicate the same response.

"It's not something you see only in this particular vessel or this particular species or this particular strain. But that maybe it's a general phenomenon," she said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.