3D images show what lies beneath Mars poles

January 4, 2017

Washington, Jan 4: Scientists using data from a NASA probe have unveiled 3D subsurface images of Mars polar ice caps, showing previously obscured layering, larger volume of frozen carbon dioxide and bowl-shaped features that may be buried impact craters.mars

The information will help scientists better understand Martian climate changes and may allow them to determine the age of the polar caps without using climate models.

The 3D data volumes were assembled from observations by the Shallow Radar (SHARAD) onboard NASA's Mars Reconnaissance Orbiter (MRO) during more than 2000 orbit passes over each Martian pole.

"We have applied industry-developed techniques in a very novel fashion to a martian dataset, producing 3D volumes that are each over 600 times larger than any terrestrial or planetary dataset of this kind," said Nathaniel E Putzig, a senior scientist at the Planetary Science Institute in the US.

"It is gratifying to see so plainly in the SHARAD volumes structures that took years of effort to characterise with the single-orbit profiles," Putzig said.

Layering seen at the surface of the martian polar caps has been studied for decades. It has long been thought to represent a record of climate changes on that planet.

The interior structures of the caps remained a mystery until the arrival of radar sounders at Mars in the last decade.

An early version of the north polar 3D volume helped to assess the quantity of water ice transferred to the polar caps in the most recent retreat from a martian ice age.

First looks at the south polar 3D volume indicate that previously mapped deposits of carbon dioxide ice are somewhat larger than reported.

In both polar 3D volumes, known impact craters in and near the polar caps that are partially filled with ice have distinctive bowl-shaped signatures in the radar data, and similar signatures are found elsewhere within the polar ices but without any surface expression.

Whether the latter structures truly are impact craters remains to be determined.
Age estimates of planetary surfaces throughout the solar system rely on statistical data for impact craters on the Moon's surface calibrated to radiometrically dated samples returned during the Apollo programme.

This method has been used to estimate the surface ages of the martian polar caps, but estimates for the ages of the caps themselves have had to rely on numerical models of past climate changes.

If a sufficient number of the bowl-shaped features found in the radar volumes are shown to be impact craters, scientists will be able to assess the age of the polar caps using cratering statistics alone.

The extent to which age estimates from this new volumetric method agree or disagree with those from climate models will have important implications for the accuracy of these dating techniques.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 8,2020

Washington DC, Jun 8: Astronomers acting on a hunch have likely resolved a mystery about young, still-forming stars and regions rich in organic molecules closely surrounding some of them.

They used the National Science Foundation's Karl G Jansky Very Large Array (VLA) to reveal one such region that previously had eluded detection and that revelation answered a longstanding question.

The regions around the young protostars contain complex organic molecules which can further combine into prebiotic molecules that are the first steps on the road to life.

The regions, dubbed "hot corinos" by astronomers, are typically about the size of our solar system and are much warmer than their surroundings, though still quite cold by terrestrial standards.

The first hot corino was discovered in 2003 and only about a dozen have been found so far. Most of these are in binary systems, with two protostars forming simultaneously.

Astronomers have been puzzled by the fact that, in some of these binary systems, they found evidence for a hot corino around one of the protostars but not the other.

"Since the two stars are forming from the same molecular cloud and at the same time, it seemed strange that one would be surrounded by a dense region of complex organic molecules and the other wouldn't," said Cecilia Ceccarelli, of the Institute for Planetary Sciences and Astrophysics at the University of Grenoble (IPAG) in France.

The complex organic molecules were found by detecting specific radio frequencies, called spectral lines, emitted by the molecules. Those characteristic radio frequencies serve as "fingerprints" to identify the chemicals.

The astronomers noted that all the chemicals found in hot corinos had been found by detecting these "fingerprints" at radio frequencies corresponding to wavelengths of only a few millimetres.

"We know that dust blocks those wavelengths, so we decided to look for evidence of these chemicals at longer wavelengths that can easily pass through dust," said Claire Chandler of the National Radio Astronomy Observatory, and principal investigator on the project.

"It struck us that dust might be what was preventing us from detecting the molecules in one of the twin protostars," added Chandler.

The astronomers used the VLA to observe a pair of protostars called IRAS 4A, in a star-forming region about 1,000 light-years from Earth. They observed the pair at wavelengths of centimetres.

At those wavelengths, they sought radio emissions from methanol, CH3OH (wood alcohol, not for drinking). This was a pair in which one protostar clearly had a hot corino and the other did not, as seen using the much shorter wavelengths.

The result confirmed their hunch. "With the VLA, both protostars showed strong evidence of methanol surrounding them. This means that both protostars have hot corinos. The reason we did not see the one at shorter wavelengths was because of dust," said Marta de Simone, a graduate student at IPAG who led the data analysis for this object.

The astronomers cautioned that while both hot corinos now are known to contain methanol, there still may be some chemical differences between them. That, they said, can be settled by looking for other molecules at wavelengths not obscured by dust.

"This result tells us that using centimetre radio wavelengths is necessary to properly study hot corinos," Claudio Codella of Arcetri Astrophysical Observatory in Florence, Italy, said.

"In the future, planned new telescopes such as the next-generation VLA and SKA, will be very important to understanding these objects," added Codella.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 19,2020

Denser places, assumed by many to be more conducive to the spread of the coronavirus that causes COVID-19, are not linked to higher infection rates, say researchers.

The study, led by Johns Hopkins University, published in the Journal of the American Planning Association, also found that dense areas were associated with lower COVID-19 death rates.

"These findings suggest that urban planners should continue to practice and advocate for compact places rather than sprawling ones, due to the myriad well-established benefits of the former, including health benefits," says study lead author Shima Hamidi from Johns Hopkins Bloomberg School of Public Health in the US.

For their analysis, the researchers examined SARS-CoV-2 infection rates and COVID-19 death rates in 913 metropolitan counties in the US.

When other factors such as race and education were taken into account, the authors found that county density was not significantly associated with county infection rate.

The findings also showed that denser counties, as compared to more sprawling ones, tended to have lower death rates--possibly because they enjoyed a higher level of development including better health care systems.

On the other hand, the research found that higher coronavirus infection and COVID-19 mortality rates in counties are more related to the larger context of metropolitan size in which counties are located.

Large metropolitan areas with a higher number of counties tightly linked together through economic, social, and commuting relationships are the most vulnerable to the pandemic outbreaks.

According to the researchers, recent polls suggest that many US citizens now consider an exodus from big cities likely, possibly due to the belief that more density equals more infection risk.

Some government officials have posited that urban density is linked to the transmissibility of the virus.

"The fact that density is unrelated to confirmed virus infection rates and inversely related to confirmed COVID-19 death rates is important, unexpected, and profound," said Hamidi.

"It counters a narrative that, absent data and analysis, would challenge the foundation of modern cities and could lead to a population shift from urban centres to suburban and exurban areas," Hamidi added.

The analysis found that after controlling for factors such as metropolitan size, education, race, and age, doubling the activity density was associated with an 11.3 per cent lower death rate.

The authors said that this is possibly due to faster and more widespread adoption of social distancing practices and better quality of health care in areas of denser population.

The researchers concluded that a higher county population, a higher proportion of people age 60 and up, a lower proportion of college-educated people, and a higher proportion of African Americans were all associated with a greater infection rate and mortality rate.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 9,2020

Twitter has hinted that it is planning a paid subscription platform that can be reused by other teams in the future.

The news that the micro-blogging platform is building a subscription platform with a team codenamed "Gryphon" resulted in Twitter stock rising over 8% on Wednesday.

Twitter revealed its plan via a job listing that seeks a full-stack senior software engineer in New York to join "Gryphon".

Interestingly, Twitter "edited" the job listing once the news broke, removing the part about "Gryphon" and any mention of their internal team or their subscription feature. The listing said the company is looking for an Android engineer to "work on a bevy of backend engineering teams to build components that allow for experimentation to deliver the best experience possible to all of our users".

Later, Twitter users noticed that the company restored the earlier job listing that mentioned the upcoming subscription platform and "Gryphon".

A spokesperson for Twitter told CNN on Wednesday that it's only a job posting, not a product announcement.

This is not the first time Twitter has thought of a paid product. 

In 2017, it sent out a survey to users and a preview of what a premium offering of its TweetDeck app might look like, including breaking news alerts and more analytics, according to The Verge.

"We're conducting this survey to assess the interest in a new, more enhanced version of Tweetdeck. We regularly conduct user research to gather feedback about people's Twitter experience and to better inform our product investment decisions, and we're exploring several ways to make TweetDeck even more valuable for professionals," a Twitter spokesperson had said at that time.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.