Brain's on-off thirst switch identified

January 27, 2015

Brains on-off

Washington, Jan 27: Scientists have identified neurons that trigger our sense of thirst and those that turn it off.

For years, researchers have suspected that thirst is regulated by neurons in the subfornical organ (SFO), in the hypothalamus. But it has been difficult to pinpoint exactly which neurons are involved.

“When researchers used electrical current to stimulate different parts of the SFO of mice, they got confusing results,” said lead author Yuki Oka, a postdoctoral research scientist in the laboratory of Charles S Zuker, a Howard Hughes Medical Institute Investigator at Columbia University Medical Center (CUMC).

The CUMC team hypothesised that there are at least two types of neurons in the SFO, including ones that drive thirst and others that suppress it.

“Those electrostimulation experiments were probably activating both types of neurons at once, so they were bound to get conflicting results,” said Oka.

To test their hypothesis, Oka and Zuker turned to optogenetics, a more precise technique for controlling brain activity. With optogenetics, researchers can control specific sets of neurons in the brain after inserting light-activated molecules into them.

Shining light onto these molecules turns on the neurons without affecting other types of neurons nearby.

These “mind-control” experiments revealed two types of neurons in the SFO that control thirst: CAMKII neurons, which turn thirst on, and VGAT neurons, which turn it off.

When the researchers turned on CAMK11 neurons, mice immediately began to seek water and to drink intensively.

This behaviour was as strong in well-hydrated mice as in dehydrated ones. Once the neurons were shut off – by turning off the light – the mice immediately stopped drinking.

The researchers also found that light-stimulation of the CAMKII neurons did not induce feeding behaviour. In addition, light-induced thirst was specific for water and did not increase the animals’ consumption of other fluids, including glycerol and honey.

Similar experiments with VGAT neurons showed that these neurons act to turn off thirst. When the researchers turned on these neurons with light, dehydrated mice immediately stopped drinking, even if they were drinking water.

“Together, these findings show that the SFO is a dedicated brain system for thirst,” said Oka.

“The SFO is one of few neurological structures that is not blocked by the blood-brain barrier – it’s completely exposed to the general circulation,” said Oka.

“This raises the possibility that it may be possible to develop drugs for conditions related to thirst,” Oka added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
May 13,2020

California, May 13: A fasting-mimicking diet could be more effective at treating some types of cancer when combined with vitamin C, suggests a new study conducted by the scientists from USC and the IFOM Cancer Institute in Milan.

In studies on mice, researchers found that the combination delayed tumour progression in multiple mouse models of colorectal cancer; in some mice, it caused disease regression. The results were published in the journal Nature Communications.

"For the first time, we have demonstrated how a completely non-toxic intervention can effectively treat an aggressive cancer," said Valter Longo, the study senior author and the director of the USC Longevity Institute at the USC Leonard Davis School of Gerontology and professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

"We have taken two treatments that are studied extensively as interventions to delay ageing-- a fasting-mimicking diet and vitamin C -- and combined them as a powerful treatment for cancer," added Longo.

The researchers said that while fasting remains a challenging option for cancer patients, a safer, more feasible option is a low-calorie, plant-based diet that causes cells to respond as if the body were fasting.

Their findings suggest that a low-toxicity treatment of fasting-mimicking diet plus vitamin C has the potential to replace more toxic treatments.

Results of prior research on the cancer-fighting potential of vitamin C have been mixed. Recent studies, though, are beginning to show some efficacy, especially in combination with chemotherapy.

In this new study, the research team wanted to find out whether a fasting-mimicking diet could enhance the high-dose vitamin C tumour-fighting action by creating an environment that would be unsustainable for cancer cells but still safe for normal cells.

"Our first in vitro experiment showed remarkable effects. When used alone, fasting-mimicking diet or vitamin C alone reduced cancer cell growth and caused a minor increase in cancer cell death. But when used together, they had a dramatic effect, killing almost all cancerous cells," said Longo.

Longo and his colleagues detected this strong effect only in cancer cells that had a mutation that is regarded as one of the most challenging targets in cancer research.

These mutations in the KRAS gene signal the body is resisting most cancer-fighting treatments, and they reduce a patient's survival rate. KRAS mutations occur in approximately a quarter of all human cancers and are estimated to occur in up to half of all colorectal cancers.

The study also provided clues about why previous studies of vitamin C as a potential anticancer therapy showed limited efficacy. By itself, a vitamin C treatment appears to trigger the KRAS-mutated cells to protect cancer cells by increasing levels of ferritin, a protein that binds iron.

But by reducing levels of ferritin, the scientists managed to increase vitamin C's toxicity for the cancer cells. Amid this finding, the scientists also discovered that colorectal cancer patients with high levels of the iron-binding protein have a lower chance of survival.

"In this study, we observed how fasting-mimicking diet cycles are able to increase the effect of pharmacological doses of vitamin C against KRAS-mutated cancers," said Maira Di Tano, a study co-author at the IFOM, FIRC Institute of Molecular Oncology in Milan, Italy.

"This occurs through the regulation of the levels of iron and of the molecular mechanisms involved in oxidative stress. The results particularly pointed to a gene that regulates iron levels: heme-oxygenase-1," added Tano.

The research team's prior studies showed that fasting and a fasting-mimicking diet slow cancer's progression and make chemotherapy more effective in tumour cells while protecting normal cells from chemotherapy-associated side effects. The combination enhances the immune system's anti-tumour response in breast cancer and melanoma mouse models.

The scientists believe cancer will eventually be treated with low-toxicity drugs in a manner similar to how antibiotics are used to treat infections that kill particular bacteria, but which can be substituted by other drugs if the first is not effective.

To move toward that goal, they say they needed to first test two hypotheses: that their non-toxic combination interventions would work in mice, and that it would look promising for human clinical trials.

In this new study, they said that they've demonstrated both. At least five clinical trials, including one at USC on breast cancer and prostate cancer patients, are now investigating the effects of the fasting-mimicking diets in combination with different cancer-fighting drugs.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
April 17,2020

Washington DC, Apr 17: In recent research, scientists have linked the emotional, social and psychiatric problems in children and adolescents with higher levels of genetic vulnerability for adult depression. The study implies that the genetics passed from parents may be linked with psychiatric problems in children and adolescents and may also leading to depression in adults.

University of Queensland scientists made the finding while analysing the genetic data of more than 42,000 children and adolescents from seven cohorts across Finland, the Netherlands, Norway, Sweden and the UK.

Professor Christel Middeldorp said that researchers have also found a link with a higher genetic vulnerability for insomnia, neuroticism and body mass index.

"By contrast, study participants with higher genetic scores for educational attainment and emotional well-being were found to have reduced childhood problems," Professor Middeldorp said.

"We calculated a person's level of genetic vulnerability by adding up the number of risk genes they had for a specific disorder or trait and then made adjustments based on the level of importance of each gene We found the relationship was mostly similar across ages," Middeldorp added.

The results indicate there are shared genetic factors that affect a range of psychiatric and related traits across a person's lifespan.

Middeldorp said that around 50 per cent of children and adolescents with psychiatric problems, such as attention deficit hyperactivity disorder (ADHD), continue to experience mental disorders as adults, and are at risk of disengaging with their school community among other social and emotional problems.

"Our findings are important as they suggest this continuity between childhood and adult traits is partly explained by genetic risk," the Professor said.

"Individuals at risk of being affected should be the focus of attention and targeted treatment," Middeldorp continued.

"Although the genetic vulnerability is not accurate enough at this stage to make individual predictions about how a person's symptoms will develop over time, it may become so in the future, in combination with other risk factors. And, this may support precision medicine by providing targeted treatments to children at the highest risk of persistent emotional and social problems," Middeldorp added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
April 14,2020

There is no evidence that the Bacille Calmette-Guerin (BCG) vaccine, which is primarily used against tuberculosis, protects people against infection with the novel coronavirus, the World Health Organization (WHO) said.

The WHO therefore didn't recommend BCG vaccination for the prevention of COVID-19 in the absence of evidence, according to its daily situation report on Monday, Xinhua news agency reported.

"There is experimental evidence from both animal and human studies that the BCG vaccine has non-specific effects on the immune system. These effects have not been well characterized and their clinical relevance remains unknown," WHO stated.

Two clinical trials addressing the question are underway, and WHO will evaluate the evidence when it is available, it noted.

BCG vaccination prevents severe forms of tuberculosis in children and diversion of local supplies may result in an increase of disease and deaths from the tuberculosis, it warned.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.