Gene-editing damages DNA more than thought: study

Agencies
July 17, 2018

Paris, Jul 17:  A revolutionary gene editing technique hailed as the future of disease eradication and mooted for a Nobel Prize may be less precise and cause more cell damage than previously thought, researchers said Monday.

Lab experiments using mouse and human cells revealed that the CRISPR-Cas9 technique "frequently" caused "extensive" gene mutations, a study team reported.

"This is the first systematic assessment of unexpected events resulting from CRISPR-Cas9 editing," said Allan Bradley of the Wellcome Sanger Institute in England, where the team conducts research.

The research showed that "changes in the DNA have been seriously underestimated before now," said Bradley, who co-authored a study published in the journal Nature Biotechnology.

The mutations have not been shown to be harmful, nor benign.

"It is important that anyone thinking of using this technology for gene therapy proceeds with caution and looks very carefully to check for harmful effects," Bradley said in a statement issued by the institute.

First unveiled about six years ago, CRISPR-Cas9 allows scientists to insert, remove and correct a faulty sequence on a strand of DNA in a cell with pinpoint precision.

It has raised hopes that one-day disease-causing genes could be removed or altered before a baby is even born.

In recent years, CRISPR-Cas9 has repeatedly been predicted to win the Nobel Chemistry Prize.

CRISPRs -- clustered regularly interspaced short palindromic repeats -- are part of the immune defence system in bacteria, used to hone in on the exact spot on the genome where the cut should be made.

Cas9 is a protein used as "scissors" to snip through the faulty gene, which is then replaced or fixed by the cell's own DNA repair mechanism.

The technique's safety has not yet been proven, and it is not approved for use in human therapy.

So far, researchers have used it to improve hearing in mice going deaf and to fix a disease-causing mutation in cloned, early-stage human embryos.

But the new finding raises "safety implications," the team said.

They found "large genetic rearrangements such as DNA deletions and insertions" in cells, which could lead to important genes being switched on or off and causing dangerous changes.

The research also showed that standardized tests do not pick up damage to DNA caused by CRISPR-Cas9.

Experts not involved in the study said it was unclear how such large, unintended changes were not noticed before.

But, "the results give no reason to panic or to lose faith in the methods when they are carried out by those who know what they are doing," said Robin Lovell-Badge of The Francis Crick Institute, a biomedical research centre in London.

For Francesca Forzano, a consultant in clinical genetics and genomics with the Guy's and St Thomas' NHS Foundation Trust, the work showed that CRISPR-Cas9 "is much less safe than previously thought" and that safety-monitoring techniques were "not entirely adequate".

More research is needed before any clinical application of the method is considered, said Forzano.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
May 13,2020

California, May 13: A fasting-mimicking diet could be more effective at treating some types of cancer when combined with vitamin C, suggests a new study conducted by the scientists from USC and the IFOM Cancer Institute in Milan.

In studies on mice, researchers found that the combination delayed tumour progression in multiple mouse models of colorectal cancer; in some mice, it caused disease regression. The results were published in the journal Nature Communications.

"For the first time, we have demonstrated how a completely non-toxic intervention can effectively treat an aggressive cancer," said Valter Longo, the study senior author and the director of the USC Longevity Institute at the USC Leonard Davis School of Gerontology and professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

"We have taken two treatments that are studied extensively as interventions to delay ageing-- a fasting-mimicking diet and vitamin C -- and combined them as a powerful treatment for cancer," added Longo.

The researchers said that while fasting remains a challenging option for cancer patients, a safer, more feasible option is a low-calorie, plant-based diet that causes cells to respond as if the body were fasting.

Their findings suggest that a low-toxicity treatment of fasting-mimicking diet plus vitamin C has the potential to replace more toxic treatments.

Results of prior research on the cancer-fighting potential of vitamin C have been mixed. Recent studies, though, are beginning to show some efficacy, especially in combination with chemotherapy.

In this new study, the research team wanted to find out whether a fasting-mimicking diet could enhance the high-dose vitamin C tumour-fighting action by creating an environment that would be unsustainable for cancer cells but still safe for normal cells.

"Our first in vitro experiment showed remarkable effects. When used alone, fasting-mimicking diet or vitamin C alone reduced cancer cell growth and caused a minor increase in cancer cell death. But when used together, they had a dramatic effect, killing almost all cancerous cells," said Longo.

Longo and his colleagues detected this strong effect only in cancer cells that had a mutation that is regarded as one of the most challenging targets in cancer research.

These mutations in the KRAS gene signal the body is resisting most cancer-fighting treatments, and they reduce a patient's survival rate. KRAS mutations occur in approximately a quarter of all human cancers and are estimated to occur in up to half of all colorectal cancers.

The study also provided clues about why previous studies of vitamin C as a potential anticancer therapy showed limited efficacy. By itself, a vitamin C treatment appears to trigger the KRAS-mutated cells to protect cancer cells by increasing levels of ferritin, a protein that binds iron.

But by reducing levels of ferritin, the scientists managed to increase vitamin C's toxicity for the cancer cells. Amid this finding, the scientists also discovered that colorectal cancer patients with high levels of the iron-binding protein have a lower chance of survival.

"In this study, we observed how fasting-mimicking diet cycles are able to increase the effect of pharmacological doses of vitamin C against KRAS-mutated cancers," said Maira Di Tano, a study co-author at the IFOM, FIRC Institute of Molecular Oncology in Milan, Italy.

"This occurs through the regulation of the levels of iron and of the molecular mechanisms involved in oxidative stress. The results particularly pointed to a gene that regulates iron levels: heme-oxygenase-1," added Tano.

The research team's prior studies showed that fasting and a fasting-mimicking diet slow cancer's progression and make chemotherapy more effective in tumour cells while protecting normal cells from chemotherapy-associated side effects. The combination enhances the immune system's anti-tumour response in breast cancer and melanoma mouse models.

The scientists believe cancer will eventually be treated with low-toxicity drugs in a manner similar to how antibiotics are used to treat infections that kill particular bacteria, but which can be substituted by other drugs if the first is not effective.

To move toward that goal, they say they needed to first test two hypotheses: that their non-toxic combination interventions would work in mice, and that it would look promising for human clinical trials.

In this new study, they said that they've demonstrated both. At least five clinical trials, including one at USC on breast cancer and prostate cancer patients, are now investigating the effects of the fasting-mimicking diets in combination with different cancer-fighting drugs.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
March 3,2020

Taking multiple courses of antibiotics within a short span of time may do people more harm than good, suggests new research which discovered an association between the number of prescriptions for antibiotics and a higher risk of hospital admissions.

Patients who have had 9 or more antibiotic prescriptions for common infections in the previous three years are 2.26 times more likely to go to hospital with another infection in three or more months, said the researchers.

Patients who had two antibiotic prescriptions were 1.23 times more likely, patients who had three to four prescriptions 1.33 times more likely and patients who had five to eight 1.77 times more likely to go to hospital with another infection.

"We don't know why this is, but overuse of antibiotics might kill the good bacteria in the gut (microbiota) and make us more susceptible to infections, for example," said Professor Tjeerd van Staa from the University of Manchester in Britain.

The study, published in the journal BMC Medicine, is based on the data of two million patients in England and Wales.

The patient records, from 2000 to 2016, covered common infections such as upper respiratory tract, urinary tract, ear and chest infections and excluded long term conditions such as cystic fibrosis and chronic lung disease.

The risks of going to hospital with another infection were related to the number of the antibiotic prescriptions in the previous three years.

A course is defined by the team as being given over a period of one or two weeks.

"GPs (general physicians) care about their patients, and over recent years have worked hard to reduce the prescribing of antibiotics,""Staa said.

"But it is clear GPs do not have the tools to prescribe antibiotics effectively for common infections, especially when patients already have previously used antibiotics.

"They may prescribe numerous courses of antibiotics over several years, which according to our study increases the risk of a more serious infection. That in turn, we show, is linked to hospital admissions," Staa added.

It not clear why hospital admissions are linked to higher prescriptions and research is needed to show what or if any biological factors exist, said the research team.

"Our hope is that, however, a tool we are working for GPs, based on patient history, will be able to calculate the risks associated with taking multiple courses of antibiotics," said Francine Jury from the University of Manchester.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.