Gravity behind male pattern baldness?

November 4, 2013

BaldnessWashington, Nov 4: The force of downward pull caused by the gravity on the scalp may be key contributor to the events leading to progressive hair loss in male pattern baldness, a new study claims.

The effects of gravity may explain the apparently paradoxical effects of testosterone in male pattern baldness, or androgenic alopecia (AGA), researchers said.

"The new theory's unparallelled ability to explain even the details of the hair loss process and the formation of the pattern in AGA is apparent," said Dr Emin Tuncay Ustuner, a plastic surgeon in Ankara, Turkey.

Ustuner's "Gravity Theory" seeks to reconcile some puzzling observations related to the development and progression of AGA.

Balding areas of the scalp show increases in a potent form of testosterone called dihydrotestosterone (DHT), while drugs that block conversion of testosterone to DHT can slow hair loss.

In the scalp, DHT seems to cause hair follicles to become thinner. But in other areas of the body, such as the underarms and genital area, DHT and other male sex hormones promote thickening of hair follicles.

Ustuner believes, in youth, the scalp has sufficient fat tissue under the skin, and it is "capable of keeping itself well-hydrated," buffering the pressure on hair follicles.

But with ageing, the skin and underlying (subcutaneous) fat become thinner, and the pressure on the hair follicles increases.

Testosterone contributes to thinning of the subcutaneous fat. In women, estrogen prevents thinning of these cushioning tissues, at least until menopause.

Ageing and testosterone-related changes create 'vicious circle' leading to hair loss as the cushion decreases, the hair follicle must strive against higher pressure, requiring more testosterone to achieve normal growth, researchers said.

This "local demand" leads to a buildup of DHT levels in the scalp, but not in the bloodstream. Rising DHT levels cause further erosion of the subcutaneous fat - creating a "vicious circle," according to Ustuner.

The hair growth cycle accelerates in response to DHT, but it's not enough to overcome the increased pressure. Over time, the hair follicle becomes smaller and smaller, resulting in progressively increasing hair loss.

If the pressure created by the weight of the scalp is the cause of balding, then hair loss should occur at the top of the head - "This is exactly what happens in AGA," Ustuner noted.

The study was published in the journal Plastic and Reconstructive Surgery.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
May 19,2020

New York, May 19: Cigarette smoke spurs the lungs to make more of the receptor protein which the novel coronavirus uses to enter human cells, according to a study which suggests that quitting smoking might reduce the risk of a severe coronavirus infection.

The findings, published in the journal Developmental Cell, may explain why smokers appear to be particularly vulnerable to severe COVID-19 disease.

"Our results provide a clue as to why smokers who develop COVID-19 tend to have poor clinical outcomes," said study senior author Jason Sheltzer, a cancer geneticist at Cold Spring Harbor Laboratory in the US.

"We found that smoking caused a significant increase in the expression of ACE2, the protein that SARS-CoV-2 uses to enter human cells," Sheltzer said.

According to the scientists, quitting smoking might reduce the risk of a severe coronavirus infection.

They said most individuals infected with the virus suffer only mild illness, if they experience any at all.

However, some require intensive care when the sometimes-fatal virus attacks, the researchers said.

In particular, they said three groups have been significantly more likely than others to develop severe illness -- men, the elderly, and smokers.

Turning to previously published data for possible explanations for these disparities, the scientists assessed if vulnerable groups share some key features related to the human proteins that the coronavirus relies on for infection.

First, they said, they focused on comparing gene activity in the lungs across different ages, between the sexes, and between smokers and nonsmokers.

The scientists said both mice that had been exposed to smoke in a laboratory, and humans who were current smokers had significant upregulation of ACE2.

According to Sheltzer, smokers produced 30-55 per cent more ACE2 than their non-smoking counterparts.

While the researchers found no evidence that age or sex impacts ACE2 levels in the lungs, they said the influence of smoke exposure was surprisingly strong.

However, they said, the change seemed to be temporary.

According to the data, the level of the receptors ACE2 in the lungs of people who had quit smoking was similar to that of non-smokers.

The study noted that the most prolific producers of ACE2 in the airways are mucus-producing cells called goblet cells.

Smoking is known to increase the prevalence of such cells, the scientists said.

"Goblet cells produce mucous to protect the respiratory tract from inhaled irritants. Thus, the increased expression of ACE2 in smokers' lungs could be a byproduct of smoking-induced secretory cell hyperplasia," Sheltzer explained.

However, Sheltzer said other studies on the effects of cigarette smoke have shown mixed results.

"Cigarette smoke contains hundreds of different chemicals. It's possible that certain ingredients like nicotine have a different effect than whole smoke does," he said.

The researchers cautioned that the actual ACE2 protein may be regulated in ways not addressed in the current study.

"One could imagine that having more cells that express ACE2 could make it easier for SARS-CoV-2 to spread in someone's lungs, but there is still a lot more we need to explore," Sheltzer said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 25,2020

Washington D.C., Jan 25: A new study conducted by a team of researchers reveals why individuals who have a history of early life adversity (ELA) are disproportionately prone to opioid addiction.

The study conducted examined how early adversities interact with factors such as increased access to opioids to directly influence brain development and function, causing a higher potential for opioid addiction.

The study was lead by UCI researchers and was published in Molecular Psychiatry.

Tallie Z. Baram, MD, PhD, the Danette Shepard Chair in Neurological Sciences at the UCI School of Medicine and one of the senior researchers for the study, was on the take that the widely known factor genetics that plays major role in addiction vulnerability, cannot be solely held responsible for the recent rise in opioid abuse.

To further clarify, the researchers simulated ELA in rats by limiting bedding and nesting materials during a short, postnatal period of time.

In female rats, this led to striking opioid addiction-like characteristics including an increased relapse- behaviour, for example.

As observed in addicted humans, the rats were willing to work very hard (pay a very high price) to obtain the drug.

Baram said: "Ultimately, we found that conditions during sensitive developmental periods can lead to vulnerability to the addictive effects of opioid drugs, especially in females, which is consistent with the prevalence of ELA in heroin-addicted women."

These findings can be used to highlight the importance given to sex differences in future ELA-related studies on opioid addiction, and in future prevention or intervention strategies being developed to address the growing opioid crisis.

The study conducted examined how early adversities interact with factors such as increased access to opioids to directly influence brain development and function, causing a higher potential for opioid addiction.

The study was lead by UCI researchers and was published in Molecular Psychiatry.

The study found that unpredictable, fragmented early life environments may lead to abnormal maturation of certain brain circuits, which profoundly impacts brain function and persists into adolescence and adulthood.

Tallie Z. Baram, MD, PhD, the Danette Shepard Chair in Neurological Sciences at the UCI School of Medicine and one of the senior researchers for the study, was on the take that the widely known factor genetics that plays major role in addiction vulnerability, cannot be solely held responsible for the recent rise in opioid abuse.

To further clarify, the researchers implanted ELA in rats by limiting bedding and nesting materials during a short, postnatal period of time.

In female rats, this led to striking opioid addiction-like characteristics including an increased relapse- behaviour, for example.

As observed in addicted humans, the rats were willing to work very hard (pay a very high price) to obtain the drug.

Baram said: "Ultimately, we found that conditions during sensitive developmental periods can lead to vulnerability to the addictive effects of opioid drugs, especially in females, which is consistent with the prevalence of ELA in heroin-addicted women."

These findings can be used to highlight the importance given to sex differences in future ELA-related studies on opioid addiction, and in future prevention or intervention strategies being developed to address the growing opioid crisis.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
April 4,2020

Washington D.C., Apr 4: While consuming a high-diet salt can result in high blood pressure, a recent study has revealed a link between salt-rich diet and weaker immune system.

The study was conducted under the leadership of the University Hospital Bonn, and the results were published in the journal Science Translational Medicine.

The research was conducted on mice that were fed a high-salt diet. Later, they were found to suffer from much more severe bacterial infections.

Human volunteers who consumed an additional six grams of salt per day also showed pronounced immune deficiencies.

The World Health Organization (WHO) has recommended a maximum amount of five grams of salt a day.

It corresponds approximately to one level teaspoon. In reality, however, many Germans exceed this limit considerably. 

Figures from the Robert Koch Institute suggest that on average men consume ten, and women more than eight grams a day.

This means that we reach for the salt shaker much more than is good for us. After all, sodium chloride, which is its chemical name, raises blood pressure and thereby increases the risk of heart attack or stroke.

"We have now been able to prove for the first time that excessive salt intake also significantly weakens an important arm of the immune system," said Prof. Dr. Christian Kurts from the Institute of Experimental Immunology at the University of Bonn.

This finding is unexpected, as some studies point in the opposite direction. For example, infections with certain skin parasites in laboratory animals heal significantly faster if these consume a high-salt diet.

The study also sheds light on the fact that the skin serves as a salt reservoir.

"Our results show that this generalization is not accurate," emphasized Katarzyna Jobin, lead author of the study.

The body keeps the salt concentration in the blood and in the various organs largely constant. Otherwise important biological processes would be impaired. The only major exception is the skin which functions as a salt reservoir of the body. This is why the additional intake of sodium chloride works so well for some skin diseases.

However, other parts of the body are not exposed to the additional salt consumed with food. Instead, it is filtered out by the kidneys and excreted in the urine.

"We examined volunteers who consumed six grams of salt in addition to their daily intake," said Prof. Kurts. This is roughly the amount contained in two fast-food meals, i.e. two burgers and two portions of French fries.

After one week, from the results, it showed that the immune cells coped much worse with bacteria after the test subjects had started to eat a high-salt diet.

In human volunteers, excessive salt intake also resulted in increased glucocorticoid levels.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.