New Delhi amongst top cities where hearing is most degraded

March 5, 2017

Washington D.C, Mar 5: Urban noise pollution and hearing loss are closely linked, according to rankings of 50 large cities in both categories released on Friday.cars

High-decibel urban areas-such as Guangzhou, New Delhi, Cairo and Istanbul-topped the list of cities where hearing was most degraded, researchers reported.

Likewise, cities least afflicted by noise pollution-including Zurich, Vienna, Oslo and Munich-registered the lowest levels of decline in hearing.

This statistical link does not necessarily mean the constant din of city life is the main driver of hearing loss, which can also be caused by infections, genetic disorders, premature birth, and even some medicines.

The findings are also preliminary, and have yet to be submitted for peer-reviewed publication.

"But this is a robust result," said Henrik Matthies, managing director of Mimi Hearing Technologies, a German company that has amassed data on 200,000 people drawn from a hearing test administered via cell phones.

"The fact that noise pollution and hearing loss have such a tight correlation points to an intricate relationship," he told AFP.

Researchers at Mimi and Charite University Hospital in Berlin explored the link by constructing two separate databases.

The first combined information from the World Health Organization (WHO) and Norwegian-based technology research group SINTEF to create a noise pollution ranking for cities around the world.

Stockholm, Seoul, Amsterdam and Stuttgart were also among the least likely to assault one's ears, while Shanghai, Hong Kong and Barcelona came out as big noise makers.

Paris-one of the most densely populated major cities in Europe-scored as the third most cacophonous.

The ranking for hearing loss drew from Mimi's phone-based test, in which respondents indicated age and sex. Geo-location technology pinpointed the cities.

The results were measured against a standard for age-adjusted hearing.

On average, people in the loudest cities were ten years "older"-in terms of hearing loss-than those in the quietest cities, the study found.

Stacked side-by-side, the two city rankings are remarkably similar, suggesting more than an incidental link.

The findings highlight the need for better monitoring, the researchers said.

"While eye and sight checks are routine, ear and hearing exams are not," said Manfred Gross, head of the department of Audiology and Phoniatrics at Charite University Hospital.

"The earlier hearing loss is detected, the better the chances are for preventing further damage."

Collaborations between scientists and private companies that collect health-related information from consumers are becoming more common in the era of Big Data.

California-based DNA genetic testing company 23andMe, for example, has worked extensively with university researchers to ferret out rare genetic disorders by combing through mountains of anonymous data from its clients.

Also on Friday, World Hearing Day, the WHO released figures showing annual costs of unaddressed hearing loss of between $750 billion and $790 billion globally.

Direct health care costs were calculated to be up to $107 billion, with loss of productivity due to unemployment or early retirement about the same.

"Societal costs"-stemming from social isolation, inability to communicate and stigma-were estimated at more than $500 billion.

In a recent editorial, the medical journal The Lancet said hearing loss is a "silent epidemic", noting that proper care remains out of reach for millions of people.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
July 24,2020

Colorado, Jul 24: A new study has found that physical stress in one's job may be associated with faster brain ageing and poorer memory.

Aga Burzynska, an assistant professor in the Department of Human Development and Family Studies, and her research team connected occupational survey responses with brain-imaging data from 99 cognitively normal older adults, age 60 to 79. They found that those who reported high levels of physical stress in their most recent job had smaller volumes in the hippocampus and performed poorer on memory tasks. The hippocampus is the part of the brain that is critical for memory and is affected in both normal ageing and in dementia.

Their findings were published this summer in Frontiers in Human Neuroscience under the research topic 'Work and Brain Health Across the Lifespan.'

"We know that stress can accelerate physical ageing and is the risk factor for many chronic illnesses," Burzynska said. "But this is the first evidence that occupational stress can accelerate brain and cognitive ageing."

She added that it is important to understand how occupational exposures affect the ageing of our brains.

"An average American worker spends more than eight hours at work per weekday, and most people remain in the workforce for over 40 years," Burzynska said. "By pure volume, occupational exposures outweigh the time we spend on leisure social, cognitive and physical activities, which protect our ageing minds and brains."

Physical demands at work

Burzynska explained that the association between "physical stress" and brain/memory were driven by physical demands at work. These included excessive reaching, or lifting boxes onto shelves, not necessarily aerobic activity. This is important because earlier work by Burzynska and her colleagues showed that leisure aerobic exercise is beneficial for brain health and cognition, from children to very old adults. Therefore, the researchers controlled for the effects of leisure physical activity and exercise.

As expected, leisure physical activity was associated with greater hippocampal volume, but the negative association with physical demands at work persisted.

"This finding suggests that physical demands at work may have parallel yet opposing associations with brain health," Burzynska explained. "Most interventions for postponing cognitive decline focus on leisure, not on your job. It's kind of unknown territory, but maybe future research can help us make some tweaks to our work environment for long-term cognitive health."

She added that the results could have important implications for society.

"Caring for people with cognitive impairment is so costly, on economic, emotional and societal levels," Burzynska said. "If we can support brain health earlier, in middle-aged workers, it could have an enormous impact."

The researchers considered and corrected for several other factors that could be related to work environment, memory and hippocampus, such as age, gender, brain size, educational level, job title, years in the occupation and general psychological stress.

One piece of the puzzle

"The research on this topic is so fragmented," Burzynska said. "One previous study linked mid-life managerial experience with greater hippocampus volume in older age. Another showed that taxi drivers had larger hippocampi than a city's bus drivers, presumably due to the need to navigate. In our study, job complexity and psychological stress at work were not related to hippocampal volume and cognition. Clearly, our study is just one piece of the puzzle, and further research is needed."

The magnetic resonance imaging (MRI) data used for the study was collected at the University of Illinois Urbana-Champaign between 2011 and 2014.

CSU researchers now can collect MRI data with the new 3T scanner at the University's Translational Medicine Institute.

With this new capability, Burzynska, along with Michael Thomas and Lorann Stallones of CSU's Department of Psychology, is launching a new project, "Impact of Occupational Exposures and Hazards on Brain and Cognitive Health Among Aging Agricultural Workers," which will involve collecting MRI brain scans and identifying risk and protective factors that could help the agricultural community age successfully. The project recently obtained funding as an Emerging Issues Short-Term Project from the High Plains Intermountain Center for Agricultural Health and Safety.

The Department of Human Development and Family Studies is part of CSU's College of Health and Human Sciences.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 10,2020

Early treatment with the antiviral drug remdesivir has been found to reduce viral load and prevent lung disease in macaques infected with SARS-CoV-2 that causes COVID-19, according to a study.

The findings, published in the journal Nature on Tuesday, support the early use of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.

Researchers from the National Institutes of Health in the US noted that remdesivir has broad antiviral activity and has been shown to be effective against infections with SARS-CoV and MERS-CoV in animal models.

The drug is being tested in human clinical trials for the treatment of COVID-19, they said.

Researcher Emmie de Wit and colleagues investigated the effects of remdesivir treatment in rhesus macaques, a recently established model of SARS-CoV-2 infection.

Two sets of six macaques were inoculated with SARS-CoV-2.

One group was treated with remdesivir 12 hours later -- close to the peak of virus reproduction in the lungs -- and these macaques received treatment every 24 hours until six days after inoculation.

In contrast to the control group, the researchers found that macaques that received remdesivir did not show signs of respiratory disease, and had reduced damage to the lungs.

Viral loads in the lower respiratory tract were also reduced in the treated animals; viral levels were around 100 times lower in the lower-respiratory tract of remdesivir-treated macaques 12 hours after the first dose, they said.

The researchers said that infectious virus could no longer be detected in the treatment group three days after initial infection, but was still detectable in four out of six control animals.

Despite this virus reduction in the lower respiratory tract, no reduction in virus shedding was observed, which indicates that clinical improvement may not equate to a lack of infectiousness, they said.

Dosing of remdesivir in the rhesus macaques is equivalent to that used in humans, the researchers noted.

They cautioned that it is difficult to directly translate the timing of treatment used in corresponding disease stages in humans, because rhesus macaques normally develop only mild disease.

However, researchers said the results indicate that remdesivir treatment of COVID-19 should be initiated as early as possible to achieve the maximum treatment effect.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 12,2020

Washington D.C., Jan 12: Disruption in one night's sleep can lead to getting Alzheimer's disease, a recent study has stated.

The interruption in the sound sleep for a single night aggravates the level of tau protein in any young male's body, thus gives rise to the chances of developing the disease.

According to CNN, the report was published on Wednesday in neurology, the medical journal of the American Academy of Neurology.

"Our study focuses on the fact that even in young, healthy individuals, missing one night of sleep increases the level of tau in blood suggesting that over time, such sleep deprivation could possibly have detrimental effects," says study author Dr Jonathan Cedernaes, a neurologist at Uppsala University in Sweden.

As defined by the Alzheimer's Association, tau is the name of a protein that helps in stabilizing the internal structure of the brain's nerve cells. An abnormal build-up of tau protein in the body can end up in causing interior cells to fall apart and eventually developing Alzheimer's.

"When you get more of that deep sleep and you get the REM sleep in the normal amounts, that improves clearance of abnormal proteins which we think is good," said Mayo Clinic neurologist Dr Donn Dexter, not the study author but a fellow of the American Academy of Neurology.

Earlier studies have also shown that getting deprived of sleep can allow higher tau development and accumulation. Thus that poor sleep can hasten the development of cognitive issues.

Researchers caution that the study is small and inconclusive, and acknowledged they were not able to determine what the increased levels might mean.

"This study raises more questions than answers," agreed Dexter on a concluding note, sharing, "What this is telling us is that we have to dig more deeply. Despite something we do for a third of our lives, we know so little about sleep and we're learning every day, particularly when it comes to sleep and dementia."

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.