Now, climate-based system could predict dengue spread in India

Agencies
September 3, 2017

London, Sept 3: Scientists have developed a system that can predict the spread of dengue in different parts of India, based on climatic factors, an advance that may help take preventive measures against the deadly infection.

Researchers from the University of Liverpool in the UK identified the climatic risks for dengue disease outbreaks in different climatic zones in the country through the states of Punjab, Haryana, Rajasthan, Gujarat and Kerala. The team, in collaboration with researchers from Indian Institute of Chemical Technology (IICT) in Hyderabad and National Institute of Pharmaceutical Education and Research

(NIPER) in Guwahati, focused on changes in a factor called 'extrinsic incubation period (EIP)' of the dengue virus by taking into account daily and monthly mean temperatures in these areas.

EIP is the time taken for incubation of the virus in the mosquito. During this period, after the mosquito draws a virus-rich-blood meal, the virus escapes the gut, passes through the mosquito's body and reaches it salivary glands. Once this happens, the mosquito is infectious and capable of transmitting the virus to a human host. It has been found that climatic conditions play an important role in EIP.

Lower temperatures (17-18 degrees Celsius) result in longer EIPs thereby leading to decreased virus transmission. With increasing temperatures, feeding increases because of enhanced metabolism of the mosquito, leading to shorter EIPs. Even a five-day decrease in the incubation period can hike transmission rate by three times, and with an increase in temperature from 17 to 30 degrees Celsius, dengue transmission increases fourfold.

However, a further increase in temperature beyond 35 degrees Celsius is detrimental to the mosquito survival. Researchers observed that except for Gujarat which comprises of arid regions, there was a strong correlation between rainfall and dengue disease burden.

They propose an increase in breeding grounds for mosquitoes as a major reason for this finding. The study found that Kerala being warm (temperature range 23.5-30 degrees Celsius) and wet and with short EIPs (9-14 days) experiences the highest number of dengue cases.

It has been found that EIP is the shortest during the monsoon season in most states and therefore there is an enhanced risk of dengue during this time. It is important to take into account the dynamic EIP estimates in different regions in assessing disease burden. "This climate-based dengue forecasting model could help health authorities to assess the disease intensity in a geographic region, based on that they can plan disease control operations well in advance and optimise the use of resources meticulously," said Srinivasa Rao Mutheneni of IICT, who led the study.

Changes in temperature affecting the extrinsic incubation period of the virus, future changes in the climate might have a substantial effect on dengue and other vector-borne disease burden in India.

"Though such methods are in vogue for disease control operations, we are still in the initial stages of implementation of such strategic control methods," Rao said. "Factors such as population density and migration also need to be included for future risk assessment studies," he said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
June 21,2020

Lower neighbourhood socioeconomic status and greater household crowding increase the risk of becoming infected with SARS-CoV-2, the virus that causes COVID-19, warn researchers.

"Our study shows that neighbourhood socioeconomic status and household crowding are strongly associated with risk of infection," said study lead author Alexander Melamed from Columbia University in the US.

"This may explain why Black and Hispanic people living in these neighbourhoods are disproportionately at risk for contracting the virus," Melamed added.

For the findings, published in the journal JAMA, the researchers examined the relationships between COVID-19 infection and neighbourhood characteristics in 396 women who gave birth during the peak of the Covid-19 outbreak in New York City. Since March 22, all women admitted to the hospitals for delivery have been tested for the virus, which gave the researchers the opportunity to detect all infections -- including infections with no symptoms -- in a defined population

The strongest predictor of COVID-19 infection among these women was residence in a neighbourhood where households with many people are common.The findings showed that women who lived in a neighbourhood with high household membership were three times more likely to be infected with the virus. Neighbourhood poverty also appeared to be a factor, the researchers said.Women were twice as likely to get COVID-19 if they lived in neighbourhoods with a high poverty rate, although that relationship was not statistically significant due to the small sample size.

The study revealed that there was no association between infection and population density.

"New York City has the highest population density of any city in the US, but our study found that the risks are related more to density in people's domestic environments rather than density in the city or within neighbourhoods," says co-author Cynthia Gyamfi-Bannerman."

The knowledge that SARS-CoV-2 infection rates are higher in disadvantaged neighbourhoods and among people who live in crowded households could help public health officials target preventive measures," the authors wrote.

Recently, another study published in the Journal of the American Planning Association, showed that dense areas were associated with lower COVID-19 death rates.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
May 19,2020

New York, May 19: Cigarette smoke spurs the lungs to make more of the receptor protein which the novel coronavirus uses to enter human cells, according to a study which suggests that quitting smoking might reduce the risk of a severe coronavirus infection.

The findings, published in the journal Developmental Cell, may explain why smokers appear to be particularly vulnerable to severe COVID-19 disease.

"Our results provide a clue as to why smokers who develop COVID-19 tend to have poor clinical outcomes," said study senior author Jason Sheltzer, a cancer geneticist at Cold Spring Harbor Laboratory in the US.

"We found that smoking caused a significant increase in the expression of ACE2, the protein that SARS-CoV-2 uses to enter human cells," Sheltzer said.

According to the scientists, quitting smoking might reduce the risk of a severe coronavirus infection.

They said most individuals infected with the virus suffer only mild illness, if they experience any at all.

However, some require intensive care when the sometimes-fatal virus attacks, the researchers said.

In particular, they said three groups have been significantly more likely than others to develop severe illness -- men, the elderly, and smokers.

Turning to previously published data for possible explanations for these disparities, the scientists assessed if vulnerable groups share some key features related to the human proteins that the coronavirus relies on for infection.

First, they said, they focused on comparing gene activity in the lungs across different ages, between the sexes, and between smokers and nonsmokers.

The scientists said both mice that had been exposed to smoke in a laboratory, and humans who were current smokers had significant upregulation of ACE2.

According to Sheltzer, smokers produced 30-55 per cent more ACE2 than their non-smoking counterparts.

While the researchers found no evidence that age or sex impacts ACE2 levels in the lungs, they said the influence of smoke exposure was surprisingly strong.

However, they said, the change seemed to be temporary.

According to the data, the level of the receptors ACE2 in the lungs of people who had quit smoking was similar to that of non-smokers.

The study noted that the most prolific producers of ACE2 in the airways are mucus-producing cells called goblet cells.

Smoking is known to increase the prevalence of such cells, the scientists said.

"Goblet cells produce mucous to protect the respiratory tract from inhaled irritants. Thus, the increased expression of ACE2 in smokers' lungs could be a byproduct of smoking-induced secretory cell hyperplasia," Sheltzer explained.

However, Sheltzer said other studies on the effects of cigarette smoke have shown mixed results.

"Cigarette smoke contains hundreds of different chemicals. It's possible that certain ingredients like nicotine have a different effect than whole smoke does," he said.

The researchers cautioned that the actual ACE2 protein may be regulated in ways not addressed in the current study.

"One could imagine that having more cells that express ACE2 could make it easier for SARS-CoV-2 to spread in someone's lungs, but there is still a lot more we need to explore," Sheltzer said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
January 26,2020

High-protein diets may help people lose weight and build muscle, but there is a downside to it --a greater heart attack risk. Researchers now report that high-protein diets boost artery-clogging plaque.

The research in mice showed that high-protein diets spur unstable plaque -- the kind most prone to rupturing and causing blocked arteries.

More plaque buildup in the arteries, particularly if it's unstable, increases the risk of heart attack.

"There are clear weight-loss benefits to high-protein diets, which has boosted their popularity in recent years," said senior author Babak Razani, associate professor at Washington University School of Medicine in St. Louis, Missouri.

"But animal studies and some large epidemiological studies in people have linked high dietary protein to cardiovascular problems. We decided to take a look at whether there is truly a causal link between high dietary protein and poorer cardiovascular health," Razani added.

The researchers studied mice who were fed a high-fat diet to deliberately induce atherosclerosis, or plaque buildup in the arteries.

Some of the mice received a high-fat diet that was also high in protein. And others were fed a high-fat, low-protein diet for comparison.

The mice on the high-fat, high-protein diet developed worse atherosclerosis -- about 30 per cent more plaque in the arteries -- than mice on the high-fat, normal-protein diet, despite the fact that the mice eating more protein did not gain weight, unlike the mice on the high-fat, normal-protein diet.

"A couple of a scoop of protein powder in a milkshake or smoothie adds something like 40 grams of protein -- almost equivalent to the daily recommended intake," Razani said.

"To see if protein has an effect on cardiovascular health, we tripled the amount of protein that the mice receive in the high-fat, high-protein diet -- keeping the fat constant. Protein went from 15 per cent to 46 per cent of calories for these mice".

Plaque contains a mix of fat, cholesterol, calcium deposits and dead cells. Past work by Razani's team and other groups has shown that immune cells called macrophages work to clean up plaque in the arteries.

But the environment inside plaque can overwhelm these cells, and when such cells die, they make the problem worse, contributing to plaque buildup and increasing plaque complexity.

"In mice on the high-protein diet, their plaques were a macrophage graveyard," Razani informed.

To understand how high dietary protein might increase plaque complexity, Razani and his colleagues also studied the path protein takes after it has been digested -- broken down into its original building blocks, called amino acids.

"This study is not the first to show a telltale increase in plaque with high-protein diets, but it offers a deeper understanding of the impact of high protein with the detailed analysis of the plaques," said Razani.

"This work not only defines the critical processes underlying the cardiovascular risks of dietary protein but also lays the groundwork for targeting these pathways in treating heart disease," he added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.