Study maps how brain recognise extensively varied faces at one go

December 27, 2016

Washington, Dec 27: Ever wondered how can you recognise whether your friend is happy or sad, at a glance? Also how can you recognise a friend, even if you haven't seen him/her in a decade?

BrainAnswering to all these, a recent study finds out how the brain recognise familiar faces with efficiency and ease, despite extensive variation in how they appear.

Researchers at Carnegie Mellon University in the US are closer than ever before to understand the neural basis of facial identification.

The study, published in the journal of Proceedings of the National Academy of Sciences (PNAS), used highly sophisticated brain imaging tools and computational methods to measure the real-time brain processes that convert the appearance of a face into the recognition of an individual.

“Our results provide a step towards understanding the stages of information processing that begin when an image of a face first enters a person's eye and unfold over the next few hundred milliseconds, until the person is able to recognize the identity of the face," said study author Mark D. Vida.

To determine, how the brain rapidly distinguishes faces, they researchers scanned the brains of four people using magnetoencephalography (MEG).

MEG allowed them to measure ongoing brain activity throughout the brain on a millisecond-by-millisecond basis while the participants viewed images of 91 different individuals with two facial expressions each: happy and neutral.

The participants indicated that when they recognised that the same individual's face was repeated, regardless of expression.

The MEG scans allowed the researchers to map out, for each of many points in time, which parts of the brain encode appearance-based information and which encode identity-based information.

The team also compared the neural data to behavioral judgments of the face images from humans, whose judgments were based mainly on identity-based information.

Then, they validated the results by comparing the neural data to the information present in different parts of a computational simulation of an artificial neural network that was trained to recognise individuals from the same face images.

“Combining the detailed timing information from MEG imaging with computational models of how the visual system works has the potential to provide insight into the real-time brain processes underlying many other abilities beyond face recognition," said another researcher David C. Plaut.

The researchers are hopeful that the findings might be used in the near future to locate the exact point at which the visual perception system breaks down in different disorders and injuries, ranging from developmental dyslexia to prosopagnosia or face blindness.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
May 19,2020

New York, May 19: Cigarette smoke spurs the lungs to make more of the receptor protein which the novel coronavirus uses to enter human cells, according to a study which suggests that quitting smoking might reduce the risk of a severe coronavirus infection.

The findings, published in the journal Developmental Cell, may explain why smokers appear to be particularly vulnerable to severe COVID-19 disease.

"Our results provide a clue as to why smokers who develop COVID-19 tend to have poor clinical outcomes," said study senior author Jason Sheltzer, a cancer geneticist at Cold Spring Harbor Laboratory in the US.

"We found that smoking caused a significant increase in the expression of ACE2, the protein that SARS-CoV-2 uses to enter human cells," Sheltzer said.

According to the scientists, quitting smoking might reduce the risk of a severe coronavirus infection.

They said most individuals infected with the virus suffer only mild illness, if they experience any at all.

However, some require intensive care when the sometimes-fatal virus attacks, the researchers said.

In particular, they said three groups have been significantly more likely than others to develop severe illness -- men, the elderly, and smokers.

Turning to previously published data for possible explanations for these disparities, the scientists assessed if vulnerable groups share some key features related to the human proteins that the coronavirus relies on for infection.

First, they said, they focused on comparing gene activity in the lungs across different ages, between the sexes, and between smokers and nonsmokers.

The scientists said both mice that had been exposed to smoke in a laboratory, and humans who were current smokers had significant upregulation of ACE2.

According to Sheltzer, smokers produced 30-55 per cent more ACE2 than their non-smoking counterparts.

While the researchers found no evidence that age or sex impacts ACE2 levels in the lungs, they said the influence of smoke exposure was surprisingly strong.

However, they said, the change seemed to be temporary.

According to the data, the level of the receptors ACE2 in the lungs of people who had quit smoking was similar to that of non-smokers.

The study noted that the most prolific producers of ACE2 in the airways are mucus-producing cells called goblet cells.

Smoking is known to increase the prevalence of such cells, the scientists said.

"Goblet cells produce mucous to protect the respiratory tract from inhaled irritants. Thus, the increased expression of ACE2 in smokers' lungs could be a byproduct of smoking-induced secretory cell hyperplasia," Sheltzer explained.

However, Sheltzer said other studies on the effects of cigarette smoke have shown mixed results.

"Cigarette smoke contains hundreds of different chemicals. It's possible that certain ingredients like nicotine have a different effect than whole smoke does," he said.

The researchers cautioned that the actual ACE2 protein may be regulated in ways not addressed in the current study.

"One could imagine that having more cells that express ACE2 could make it easier for SARS-CoV-2 to spread in someone's lungs, but there is still a lot more we need to explore," Sheltzer said.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 6,2020

Researchers have found the rates of lung cancer are higher in young women than men.

The study, published in the journal Pediatrics, examined lung cancer rates in young adults in 40 countries across five continents and uncovered a trend of higher lung cancer rates in women compared with men in recent years.

The emerging trend was widespread, affecting countries across varied geographic locations and income levels.

The changes appeared to be driven by a rising rate of adenocarcinoma lung cancer among women, said the study researchers from University of Calgary in Canada.

Lung cancer rates have been higher among men than women because men started smoking in large numbers earlier and smoked at higher rates; however, recent studies have reported converging lung cancer incidence rates between sexes.

Among men, age specific lung cancer incidence rates generally decreased in all countries, while in women the rates varied across countries with the trends in most countries stable or declining, albeit at a slower pace compared to those in men.

For the findings, lung and bronchial cancer cases between 30-64 age group from 1993-2012 were extracted from cancer incidence in five continents.

The study found the higher emerging rates of lung cancer in young women compared to young men.

According to the researchers, future studies are needed to identify reasons for the elevated incidence of lung cancer among young women.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
March 3,2020

Taking multiple courses of antibiotics within a short span of time may do people more harm than good, suggests new research which discovered an association between the number of prescriptions for antibiotics and a higher risk of hospital admissions.

Patients who have had 9 or more antibiotic prescriptions for common infections in the previous three years are 2.26 times more likely to go to hospital with another infection in three or more months, said the researchers.

Patients who had two antibiotic prescriptions were 1.23 times more likely, patients who had three to four prescriptions 1.33 times more likely and patients who had five to eight 1.77 times more likely to go to hospital with another infection.

"We don't know why this is, but overuse of antibiotics might kill the good bacteria in the gut (microbiota) and make us more susceptible to infections, for example," said Professor Tjeerd van Staa from the University of Manchester in Britain.

The study, published in the journal BMC Medicine, is based on the data of two million patients in England and Wales.

The patient records, from 2000 to 2016, covered common infections such as upper respiratory tract, urinary tract, ear and chest infections and excluded long term conditions such as cystic fibrosis and chronic lung disease.

The risks of going to hospital with another infection were related to the number of the antibiotic prescriptions in the previous three years.

A course is defined by the team as being given over a period of one or two weeks.

"GPs (general physicians) care about their patients, and over recent years have worked hard to reduce the prescribing of antibiotics,""Staa said.

"But it is clear GPs do not have the tools to prescribe antibiotics effectively for common infections, especially when patients already have previously used antibiotics.

"They may prescribe numerous courses of antibiotics over several years, which according to our study increases the risk of a more serious infection. That in turn, we show, is linked to hospital admissions," Staa added.

It not clear why hospital admissions are linked to higher prescriptions and research is needed to show what or if any biological factors exist, said the research team.

"Our hope is that, however, a tool we are working for GPs, based on patient history, will be able to calculate the risks associated with taking multiple courses of antibiotics," said Francine Jury from the University of Manchester.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.