Walking restored in paralysed mice with spinal injury

Agencies
July 23, 2018

Boston, Jul 23: Scientists have successfully restored the ability to walk in mice that were paralysed after a spinal cord injury, an advance that may pave the way for similar treatments in humans.

Most people with spinal cord injury are paralysed from the injury site down, even when the cord is not completely severed.

Researchers at Boston Children's Hospital in the US provided insight into why the spared portions of the spinal cord do not keep working.

They also show that a small-molecule compound, given systemically, can revive these circuits in paralysed mice, restoring their ability to walk.

"For this fairly severe type of spinal cord injury, this is most significant functional recovery we know of. We saw 80 per cent of mice treated with this compound recover their stepping ability," said Zhigang He, from Boston Children's Hospital.

Many animal studies looking to repair spinal cord damage have focused on getting nerve fibres, or axons, to regenerate, or to getting new axons to sprout from healthy ones.

While impressive axon regeneration and sprouting have been achieved their impacts on the animals' motor function after a severe injury are less clear.

Some studies have tried using neuromodulators such as serotonergic drugs to simulate the spinal circuits, but have gotten only transient, uncontrolled limb movement.

Researchers took another approach, inspired by the success of epidural electrical stimulation-based strategies, the only treatment known to be effective in patients with spinal cord injury.

This treatment applies a current to the lower portion of the spinal cord; combined with rehabilitation training, it has enabled some patients to regain movement.

"Epidural stimulation seems to affect the excitability of neurons," said He.

"However, in these studies, when you turn off the stimulation, the effect is gone. We tried to come up with a pharmacologic approach to mimic the stimulation and better understand how it works," he said.

Researchers selected a handful of compounds that are already known to alter the excitability of neurons, and are able to cross the blood-brain barrier.

They gave each compound to paralysed mice in groups of 10 via intraperitoneal injection.

All mice had severe spinal cord injury, but with some nerves intact. Each group (plus a control group given a placebo) was treated for eight to ten weeks.

One compound, called CLP290, had the most potent effect, enabling paralysed mice to regain stepping ability after four to five weeks of treatment. Electromyography recordings showed that the two relevant groups of hind-limb muscles were active.

The animals' walking scores remained higher than the controls' up to two weeks after stopping treatment. Side effects were minimal.

"We are very excited by this direction. We want to test this kind of treatment in a more clinically relevant model of spinal cord injury," said He.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 10,2020

Washington D.C, Feb 10: Children's vulnerability towards depression, anxiety, impulsive behaviour, and poor cognitive performance could be determined by considering the hours of sleep they manage to get.

Sleep states are active processes that support the reorganisation of brain circuitry. This makes sleep especially important for children, whose brains are developing and reorganising rapidly.

In a study by researchers from the University of Warwick -- recently published in the journal Molecular Psychiatry -- cases of 11,000 children aged between 9 and 11 years from the Adolescent Brain Cognitive Development dataset were analyzed to find out the relationship between sleep duration and brain structure.

The study was carried out by researchers Professor Jianfeng Feng, Professor Edmund Rolls, Dr. Wei Cheng and colleagues from the University of Warwick's Department of Computer Science and Fudan University.

Measures of depression, anxiety, impulsive behaviour and poor cognitive performance in the children were associated with shorter sleep duration. Moreover, the depressive problems were associated with short sleep duration one year later.

The reduced brain volume of areas such as orbitofrontal cortex, prefrontal, and temporal cortex, precuneus, and supramarginal gyrus was found to be associated with the shorter sleep duration.

Professor Jianfeng Feng, from the University of Warwick's Department of Computer Science, comments: "The recommended amount of sleep for children 6 to 12 years of age is 9-12 hours. However, sleep disturbances are common among children and adolescents around the world due to the increasing demand on their time from school, increased screen time use, and sports and social activities."

A previous study showed that about 60 per cent of adolescents in the United States receive less than eight hours of sleep on school nights.

Professor Jianfeng Feng further added: "Our findings showed that the total score for behavior problems in children with less than 7 hours sleep was 53 per cent higher on average and the cognitive total score was 7.8 per cent lower on average than for children with 9-11 hours of sleep. It highlights the importance of enough sleep in both cognition and mental health in children."

Professor Edmund Rolls from the University of Warwick's Department of Computer Science also commented: "These are important associations that have been identified between sleep duration in children, brain structure, and cognitive and mental health measures, but further research is needed to discover the underlying reasons for these relationships."

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
Agencies
February 26,2020

Feb 26: While too much stress can be toxic to your health, a new study suggests that despite its negative side effects, it may also lead to a surprising social benefit.

The research, published in the journal Stress & Health, found that experiencing stress made people both more likely to give and receive emotional support from another person.

This was true on the day they experienced the stressor as well as the following day.

"Our findings suggest that just because we have a bad day, that doesn't mean it has to be completely unhealthy," said study researcher David Almeida from Penn State University in the US.

"If stress can actually connect us with other people, which I think is absolutely vital to the human experience, I think that's a benefit. Stress could potentially help people deal with negative situations by driving them to be with other people," Almeida added.

For the study, the researchers interviewed 1,622 participants every night for eight nights. They asked the participants about their stressors and whether they gave or received emotional support on that day.

Stressors included arguments, stressful events at work or school, and stressful events at home.

The researchers found that on average, participants were more than twice as likely to either give or receive emotional support on days they experienced a stressor.

Additionally, they were 26 per cent more likely to give or receive support the following day.

The researchers said that while this effect, on average, was found across the participants, it differed slightly between men and women.

"Women tended to engage in more giving and receiving emotional support than men," said study researcher Hye Won Chai.

"In our study, men were also more likely to engage in emotional support on days they were stressed, but to a lesser extent than women," Chai added.

The researchers said they were surprised that stress was linked to people not just receiving emotional support, but giving it, as well.

"We saw that someone experiencing a stressor today actually predicted them giving emotional support the next day," Almeida said.

"This made me think that it's actually possible that stress helps to drive you to other people and allows it to be ok to talk about problems -- your problems, my problems," Almeida added.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.
News Network
May 13,2020

California, May 13: A fasting-mimicking diet could be more effective at treating some types of cancer when combined with vitamin C, suggests a new study conducted by the scientists from USC and the IFOM Cancer Institute in Milan.

In studies on mice, researchers found that the combination delayed tumour progression in multiple mouse models of colorectal cancer; in some mice, it caused disease regression. The results were published in the journal Nature Communications.

"For the first time, we have demonstrated how a completely non-toxic intervention can effectively treat an aggressive cancer," said Valter Longo, the study senior author and the director of the USC Longevity Institute at the USC Leonard Davis School of Gerontology and professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

"We have taken two treatments that are studied extensively as interventions to delay ageing-- a fasting-mimicking diet and vitamin C -- and combined them as a powerful treatment for cancer," added Longo.

The researchers said that while fasting remains a challenging option for cancer patients, a safer, more feasible option is a low-calorie, plant-based diet that causes cells to respond as if the body were fasting.

Their findings suggest that a low-toxicity treatment of fasting-mimicking diet plus vitamin C has the potential to replace more toxic treatments.

Results of prior research on the cancer-fighting potential of vitamin C have been mixed. Recent studies, though, are beginning to show some efficacy, especially in combination with chemotherapy.

In this new study, the research team wanted to find out whether a fasting-mimicking diet could enhance the high-dose vitamin C tumour-fighting action by creating an environment that would be unsustainable for cancer cells but still safe for normal cells.

"Our first in vitro experiment showed remarkable effects. When used alone, fasting-mimicking diet or vitamin C alone reduced cancer cell growth and caused a minor increase in cancer cell death. But when used together, they had a dramatic effect, killing almost all cancerous cells," said Longo.

Longo and his colleagues detected this strong effect only in cancer cells that had a mutation that is regarded as one of the most challenging targets in cancer research.

These mutations in the KRAS gene signal the body is resisting most cancer-fighting treatments, and they reduce a patient's survival rate. KRAS mutations occur in approximately a quarter of all human cancers and are estimated to occur in up to half of all colorectal cancers.

The study also provided clues about why previous studies of vitamin C as a potential anticancer therapy showed limited efficacy. By itself, a vitamin C treatment appears to trigger the KRAS-mutated cells to protect cancer cells by increasing levels of ferritin, a protein that binds iron.

But by reducing levels of ferritin, the scientists managed to increase vitamin C's toxicity for the cancer cells. Amid this finding, the scientists also discovered that colorectal cancer patients with high levels of the iron-binding protein have a lower chance of survival.

"In this study, we observed how fasting-mimicking diet cycles are able to increase the effect of pharmacological doses of vitamin C against KRAS-mutated cancers," said Maira Di Tano, a study co-author at the IFOM, FIRC Institute of Molecular Oncology in Milan, Italy.

"This occurs through the regulation of the levels of iron and of the molecular mechanisms involved in oxidative stress. The results particularly pointed to a gene that regulates iron levels: heme-oxygenase-1," added Tano.

The research team's prior studies showed that fasting and a fasting-mimicking diet slow cancer's progression and make chemotherapy more effective in tumour cells while protecting normal cells from chemotherapy-associated side effects. The combination enhances the immune system's anti-tumour response in breast cancer and melanoma mouse models.

The scientists believe cancer will eventually be treated with low-toxicity drugs in a manner similar to how antibiotics are used to treat infections that kill particular bacteria, but which can be substituted by other drugs if the first is not effective.

To move toward that goal, they say they needed to first test two hypotheses: that their non-toxic combination interventions would work in mice, and that it would look promising for human clinical trials.

In this new study, they said that they've demonstrated both. At least five clinical trials, including one at USC on breast cancer and prostate cancer patients, are now investigating the effects of the fasting-mimicking diets in combination with different cancer-fighting drugs.

Comments

Add new comment

  • Coastaldigest.com reserves the right to delete or block any comments.
  • Coastaldigset.com is not responsible for its readers’ comments.
  • Comments that are abusive, incendiary or irrelevant are strictly prohibited.
  • Please use a genuine email ID and provide your name to avoid reject.